Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Sheng Li Xue Bao ; 68(4): 414-22, 2016 Aug 25.
Artigo em Chinês | MEDLINE | ID: mdl-27546502

RESUMO

In vertebrate visual system, retina is the first stage for visual information processing. Retinal ganglion cells are the only output neurons of the retina, and their firing activities are dependent on visual stimuli. Retinal ganglion cells can effectively encode visual information via various manners, such as firing rate, temporal structure of spike trains, and concerted activity, etc. Adaptation is one of the basic characteristics of the nervous system, which enables retinal neurons to encode stimuli under a wide variety of natural conditions with limited range in their output. This article reviews the recent studies focused on the coding properties and adaptation of retinal ganglion cells. Relevant issues about dynamical adjustment of coding strategies of retinal ganglion cells in response to different visual stimulation, as well as physiological property and function of adaptation are discussed.


Assuntos
Células Ganglionares da Retina , Estimulação Luminosa , Retina
2.
Front Comput Neurosci ; 10: 75, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27486396

RESUMO

How visual information is encoded in spikes of retinal ganglion cells (RGCs) is essential in visual neuroscience. In the present study, we investigated the coding properties of mouse RGCs with dual-peak patterns with respect to visual stimulus intervals. We first analyzed the response properties, and observed that the latencies and spike counts of the two response peaks in the dual-peak pattern exhibited systematic changes with the preceding light-OFF interval. We then applied linear discriminant analysis (LDA) to assess the relative contributions of response characteristics of both peaks in information coding regarding the preceding stimulus interval. It was found that for each peak, the discrimination results were far better than chance level based on either latency or spike count, and were further improved by using the combination of the two parameters. Furthermore, the best discrimination results were obtained when latencies and spike counts of both peaks were considered in combination. In addition, the correct rate for stimulation discrimination was higher when RGC population activity was considered as compare to single neuron's activity, and the correct rate was increased with the group size. These results suggest that rate coding, temporal coding, and population coding are all involved in encoding the different stimulus-interval patterns, and the two response peaks in the dual-peak pattern carry complementary information about stimulus interval.

3.
Cogn Neurodyn ; 10(3): 211-23, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27275377

RESUMO

Dual-peak responses of retinal ganglion cells (RGCs) are observed in various species, previous researches suggested that both response peaks were involved in retinal information coding. In the present study, we investigated the temporal properties of the dual-peak responses recorded in mouse RGCs elicited by spatially homogeneous light flashes and the effect of the inhibitory inputs mediated by GABAergic and/or glycinergic pathways. We found that the two peaks in the dual-peak responses exhibited distinct temporal dynamics, similar to that of short-latency and long-latency single-peak responses respectively. Pharmacological studies demonstrated that the application of exogenous GABA or glycine greatly suppressed or even eliminated the second peak of the cells' firing activities, while little change was induced in the first peak. Co-application of glycine and GABA led to complete elimination of the second peak. Moreover, application of picrotoxin or strychnine induced dual-peak responses in some cells with transient responses by unmasking a second response phase. These results suggest that both GABAergic and glycinergic pathways are involved in the dual-peak responses of the mouse RGCs, and the two response peaks may arise from distinct pathways that would converge on the ganglion cells.

4.
Acta Physiologica Sinica ; (6): 667-674, 2014.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-255988

RESUMO

The present study is aimed to investigated the firing activity of pyramidal neurons and interneurons in the medial prefrontal cortex (mPFC) in rats with bilateral intraventricular injection of 5,7-dihydroxytryptamine (5,7-DHT) by using in vivo extracellular recording. The results showed that the injection of 5,7-DHT reduced the 5-hydroxytryptamine (5-HT) levels in the mPFC and dorsal raphe nucleus in the rats. The firing rate of mPFC pyramidal neurons in rats with 5,7-DHT injection was significantly higher than that of normal rats, and the firing pattern of these neurons also changed significantly towards a more burst-firing, while the injection decreased the firing rate of mPFC interneurons and changed the firing pattern of the interneurons towards a more irregular. These results indicate that the lesions of the serotonergic neurons lead to the changes in the firing activity of mPFC pyramidal neurons and interneurons, suggesting that serotonergic system plays an important role in the regulation of the neuronal activity in the mPFC.


Assuntos
Animais , Ratos , 5,7-Di-Hidroxitriptamina , Farmacologia , Potenciais de Ação , Núcleo Dorsal da Rafe , Biologia Celular , Injeções Intraventriculares , Interneurônios , Córtex Pré-Frontal , Biologia Celular , Células Piramidais , Serotonina , Metabolismo
5.
Protein Cell ; 2(9): 764-71, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21976066

RESUMO

Correlated firings among neurons have been extensively investigated; however, previous studies on retinal ganglion cell (RGC) population activities were mainly based on analyzing the correlated activities between the entire spike trains. In the present study, the correlation properties were explored based on burst-like activities and solitary spikes separately. The results indicate that: (1) burst-like activities were more correlated with other neurons' activities; (2) burst-like spikes correlated with their neighboring neurons represented a smaller receptive field than that of correlated solitary spikes. These results suggest that correlated burst-like spikes should be more efficient in signal transmission, and could encode more detailed spatial information.


Assuntos
Rana catesbeiana/fisiologia , Células Ganglionares da Retina/fisiologia , Neurônios Retinianos/fisiologia , Potenciais de Ação , Animais , Simulação por Computador , Escuridão , Eletrofisiologia , Técnicas In Vitro , Luz , Técnicas de Patch-Clamp , Somação de Potenciais Pós-Sinápticos , Rana catesbeiana/cirurgia , Retina/fisiologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...