Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(6): 8623-8632, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35109655

RESUMO

Microchannel reactor is a novel electrochemical device to intensify CO2 mass transfer with large interfacial areas. However, if the catalyst inserted in the microchannel is wetted, CO2 is required to diffuse across the liquid film to get access to reaction sites. In this paper, a hydrophobic polytetrafluoroethylene (PTFE)-doped Ag nanocatalyst on a Zn rod was synthesized through a facile galvanic replacement of 2Ag++Zn → 2Ag + Zn2+. The catalyst layer, which was PTFE incorporated into the Ag matrix, was detected to distribute uniformly on the Zn substrate with a thickness of 77 µm. Consequently, the PTFE-doped electrode demonstrated enhanced activity with an optimal 96.19% CO faradaic efficiency (FECO) in the microchannel reactor. Typically, the catalyst could maintain over 90% FECO even at the current density of 24 mA cm-2, which was nearly 30% higher than that of a similar catalyst without PTFE. In addition, influences of the concentration of PTFE and deposition time were also investigated, determining that 1 vol % of PTFE and 30 min of coating yielded best electrocatalytic efficiency. To achieve a further breakthrough of CO2 mass transfer limitations, reactions were applied under relatively high pressures (3-15 bar) in a single-compartment high-pressure cell. The maximum CO partial current density (jCO) can reach 106.76 mA cm-2 at 9 bar.

2.
Nanotechnology ; 33(12)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34902843

RESUMO

Noble metal aerogels (NMAs) have been used in a variety of (photo-)electrocatalytic reactions, but pure Au aerogel (AG) has not been used in CO2electroreduction to date. To explore the potential application in this direction, AG was prepared to be used as the cathode in CO2electroreduction to CO. However, the gelation time of NMAs is usually very long, up to several weeks. Here, an excess NaBH4and turbulence mixing-promoted gelation approach was developed by introducing magnetic stirring as an external force field, which therefore greatly shortened the formation time of Au gels to several seconds. The AG-3 (AG with Au loading of 0.003 g) exhibited a high CO Faradaic efficiency (FE) of 95.6% at an extremely low overpotential of 0.39 V, and over 91% of CO FE was reached in a wide window of -0.4 to -0.7 V versus the reversible hydrogen electrode (RHE). Partial current density in CO was measured to be -19.35 mA cm-2at -0.8 V versus RHE under 1 atm of CO2. The excellent performance should be ascribed to its porous structure, abundant active sites, and large electrochemical active surface area. It provides a new method for preparation of AG with ultrafast gelation time and large production at room temperature, and the resulting pure AG was for the first time used in the field of CO2electroreduction.

3.
Nanotechnology ; 32(16): 165705, 2021 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-33361577

RESUMO

To increase the specific surface area, high-density (i.e. number per unit area) Ag nanosheets (ANS) with large electrochemically active surface area and rich edge active sites over Ag plates were synthesized via a facile electrodeposition approach in a double electrode system at a constant current of -1 mA for 1800 s. By adjusting the concentration of H3BO3 (0.5 M, 0.1 M and 0.05 M), which is used to control the growth direction of ANS, ANS-20, -50, -350 were obtained with varying thickness of 20 nm, 50 nm, and 350 nm, respectively. Notably, ANS-20 showed a remarkable current density of -6.48 mA cm-2 at -0.9 V versus the reversible hydrogen electrode (RHE), which is almost 1.6 and 2.4 times as high as those of ANS-50 and -350, respectively. Furthermore, ANS-20 exhibits the best CO selectivity of 91.2% at -0.8 V versus RHE, while the other two give 84.6% and 77.9% at the same potential. The excellent performance of ANS-20 is attributed to its rich edge active sites and large electrochemically active surface area (ECSA).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA