Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35593765

RESUMO

Resolving trajectories of axonal pathways in the primate prefrontal cortex remains crucial to gain insights into higher-order processes of cognition and emotion, which requires a comprehensive map of axonal projections linking demarcated subdivisions of prefrontal cortex and the rest of brain. Here, we report a mesoscale excitatory projectome issued from the ventrolateral prefrontal cortex (vlPFC) to the entire macaque brain by using viral-based genetic axonal tracing in tandem with high-throughput serial two-photon tomography, which demonstrated prominent monosynaptic projections to other prefrontal areas, temporal, limbic, and subcortical areas, relatively weak projections to parietal and insular regions but no projections directly to the occipital lobe. In a common 3D space, we quantitatively validated an atlas of diffusion tractography-derived vlPFC connections with correlative green fluorescent protein-labeled axonal tracing, and observed generally good agreement except a major difference in the posterior projections of inferior fronto-occipital fasciculus. These findings raise an intriguing question as to how neural information passes along long-range association fiber bundles in macaque brains, and call for the caution of using diffusion tractography to map the wiring diagram of brain circuits.


In the brain is a web of interconnected nerve cells that send messages to one another via spindly projections called axons. These axons join together at junctions called synapses to create circuits of nerve cells which connect neighboring or distant brain regions. Notably, long-range neural connections underpin higher-order cognitive skills (such as planning and emotion regulation) which make humans distinct from our primate relatives. Only by untangling these far-reaching networks can researchers begin to delineate what sets the human brain apart from other species. Researchers deploy a range of imaging techniques to map neural networks: scanning entire brains using MRI machines, or imaging thin slices of fluorescently labelled brain tissue using powerful microscopes. However, tracing long-range axons at a high resolution is challenging, and has stirred up debate about whether some neural tracts, such as the inferior fronto-occipital fasciculus, are present in all primates or only humans. To address these discrepancies, Yan, Yu et al. employed a two-pronged approach to map neural circuits in the brains of macaques. First, two techniques ­ called viral tracing and two-photon microscopy ­ were used to create a three-dimensional, fine-grain map showing how the ventrolateral prefrontal cortex (vlPFC), which regulates complex behaviors, connects to the rest of the brain. This revealed prominent axons from the vlPFC projecting via a single synapse to distant brain regions involved in higher-order functions, such as encoding memories and processing emotion. However, there were no direct, monosynaptic connections between the vlPFC and the occipital lobe, the brain's visual processing center at the back of the head. Next, Yan, Yu et al. used a specialized MRI scanner to create an atlas of neural circuits connected to the vlPFC, and compared these results to a technique tracing axons stained with a fluorescent dye. In general, there was good agreement between the two methods, except for major differences in the rear-end projections that typically form the inferior fronto-occipital fasciculus. This suggests that this long-range neural pathway exists in monkeys, but it connects via multiple synapses instead of a single junction as was previously thought. The findings of Yan, Yu et al. provide new insights on the far-reaching neural pathways connecting distant parts of the macaque brain. It also suggests that atlases of neural circuits from whole brain scans should be taken with caution and validated using neural tracing experiments.


Assuntos
Mapeamento Encefálico , Imagem de Tensor de Difusão , Animais , Encéfalo , Mapeamento Encefálico/métodos , Imagem de Tensor de Difusão/métodos , Macaca , Vias Neurais , Córtex Pré-Frontal/diagnóstico por imagem
2.
Cereb Cortex ; 31(1): 341-355, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32844170

RESUMO

The developmental trajectory of the primate brain varies substantially with aging across subjects. However, this ubiquitous variability between individuals in brain structure is difficult to quantify and has thus essentially been ignored. Based on a large-scale structural magnetic resonance imaging dataset acquired from 162 cynomolgus macaques, we create a species-specific 3D template atlas of the macaque brain, and deploy normative modeling to characterize individual variations of cortical thickness (CT) and regional gray matter volume (GMV). We observed an overall decrease in total GMV and mean CT, and an increase in white matter volume from juvenile to early adult. Specifically, CT and regional GMV were greater in prefrontal and temporal cortices relative to early unimodal areas. Age-dependent trajectories of thickness and volume for each cortical region revealed an increase in the medial temporal lobe, and decreases in all other regions. A low percentage of highly individualized deviations of CT and GMV were identified (0.0021%, 0.0043%, respectively, P < 0.05, false discovery rate [FDR]-corrected). Our approach provides a natural framework to parse individual neuroanatomical differences for use as a reference standard in macaque brain research, potentially enabling inferences regarding the degree to which behavioral or symptomatic variables map onto brain structure in future disease studies.


Assuntos
Envelhecimento/fisiologia , Mapeamento Encefálico , Encéfalo/patologia , Individualidade , Tamanho do Órgão/fisiologia , Animais , Cabeça/patologia , Processamento de Imagem Assistida por Computador/métodos , Macaca , Imageamento por Ressonância Magnética/métodos
3.
J Neurosci ; 40(19): 3799-3814, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32269107

RESUMO

MECP2 gain-of-function and loss-of-function in genetically engineered monkeys recapitulates typical phenotypes in patients with autism, yet where MECP2 mutation affects the monkey brain and whether/how it relates to autism pathology remain unknown. Here we report a combination of gene-circuit-behavior analyses including MECP2 coexpression network, locomotive and cognitive behaviors, and EEG and fMRI findings in 5 MECP2 overexpressed monkeys (Macaca fascicularis; 3 females) and 20 wild-type monkeys (Macaca fascicularis; 11 females). Whole-genome expression analysis revealed MECP2 coexpressed genes significantly enriched in GABA-related signaling pathways, whereby reduced ß-synchronization within fronto-parieto-occipital networks was associated with abnormal locomotive behaviors. Meanwhile, MECP2-induced hyperconnectivity in prefrontal and cingulate networks accounted for regressive deficits in reversal learning tasks. Furthermore, we stratified a cohort of 49 patients with autism and 72 healthy controls of 1112 subjects using functional connectivity patterns, and identified dysconnectivity profiles similar to those in monkeys. By establishing a circuit-based construct link between genetically defined models and stratified patients, these results pave new avenues to deconstruct clinical heterogeneity and advance accurate diagnosis in psychiatric disorders.SIGNIFICANCE STATEMENT Autism spectrum disorder (ASD) is a complex disorder with co-occurring symptoms caused by multiple genetic variations and brain circuit abnormalities. To dissect the gene-circuit-behavior causal chain underlying ASD, animal models are established by manipulating causative genes such as MECP2 However, it is unknown whether such models have captured any circuit-level pathology in ASD patients, as demonstrated by human brain imaging studies. Here, we use transgenic macaques to examine the causal effect of MECP2 overexpression on gene coexpression, brain circuits, and behaviors. For the first time, we demonstrate that the circuit abnormalities linked to MECP2 and autism-like traits in the monkeys can be mapped to a homogeneous ASD subgroup, thereby offering a new strategy to deconstruct clinical heterogeneity in ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Encéfalo/fisiologia , Locomoção/genética , Proteína 2 de Ligação a Metil-CpG/genética , Vias Neurais/fisiopatologia , Animais , Animais Geneticamente Modificados , Mapeamento Encefálico/métodos , Modelos Animais de Doenças , Eletroencefalografia , Feminino , Neurônios GABAérgicos/fisiologia , Duplicação Gênica , Humanos , Macaca fascicularis , Imageamento por Ressonância Magnética , Masculino
4.
Horm Behav ; 80: 117-124, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26844866

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), a main member of phthalates used as plasticizer in PVC plastics, is an environmental endocrine disrupter. The present study investigated the effect of DEHP on social behavior of mice following pubertal exposure (1, 10, 50, and 200mg/kg/d) from postnatal day 28 through postnatal day 42. The results showed that, in pubertal females, DEHP reduced the time spent in social play and social investigation and inhibited sociability, but a contrary effect was found in pubertal males, suggesting that the effect of DEHP on pubertal social behavior displays sex differences. In adults, DEHP reduced sociability in females and inhibited social play and social investigation in males, suggesting that early pubertal exposure to DEHP not only plays a significant role in puberty but also alters social behavior in adults. In addition, the present study showed that the higher dose of DEHP (50, 200mg/kg/d) reduced the relative weight of bilateral testis and anogenital distance of pubertal or adult males, suggesting an anti-androgenic activity of DEHP. These results suggest that early pubertal exposure to DEHP sex- and age- specifically affected the social behaviors of pubertal and even adult mice.


Assuntos
Dietilexilftalato/farmacologia , Disruptores Endócrinos/farmacologia , Maturidade Sexual/efeitos dos fármacos , Comportamento Social , Fatores Etários , Antagonistas de Androgênios/farmacologia , Animais , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos ICR , Jogos e Brinquedos , Caracteres Sexuais , Testículo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...