Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Chem Sci ; 15(28): 11053-11064, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39027275

RESUMO

Developing a high-performance near-ultraviolet (NUV) material and its simple non-doped device with a small efficiency roll-off and good color purity is a promising but challenging task. Here, we proposed a novel donor'-donor-acceptor (D'-D-A) type molecular strategy to largely solve the intrinsic contradictions among wide-bandgap NUV emission, fluorescence efficiency, carrier injection and transport. An efficient NUV fluorophore, 3,6-mPPICNC3, exhibiting a hybridized local and charge-transfer state, is achieved through precise molecular configuration engineering, realizing similar hole and electron mobilities at both low and high electric fields. Moreover, the planarized intramolecular charge transfer excited state and steric hindrance effect endow 3,6-mPPICNC3 with a considerable luminous efficiency and good color purity in the aggregation state. Consequently, the non-doped device emitting stable NUV light with Commission Internationale de l'Eclairage (CIE) coordinates of (0.160, 0.032) and a narrow full width at half maximum of 44 nm exhibits a state-of-the-art external quantum efficiency (EQE) of 7.67% and negligible efficiency roll-off over a luminance range from 0 to 3300 cd m-2. This is a record-high efficiency among all the reported non-doped NUV devices. Amazingly, an EQE of 7.85% and CIE coordinates of (0.161, 0.025) are achieved in the doped device. This demonstrates that the D'-D-A-type molecular structure has great potential for developing high-performance organic light-emitting materials and their optoelectronic applications.

2.
Angew Chem Int Ed Engl ; : e202410857, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39073201

RESUMO

As a class of predominantly used cathode interlayers (CILs) in organic solar cells (OSCs), perylene-diimide (PDI)-based polymers exhibit intriguing characteristics of excellent charge transporting capacity and suitable energy levels. Despite that, PDI-based CILs with satisfied film-forming ability and adequate solvent resistance are rather rare, which not only limits the further advance of OSC performances but also hinders the practical use of PDI CILs. Herein, we designed and synthesized two non-conjugated PDI polymers for achieving high power conversion efficiency (PCE) in diverse types of OSCs. The utilization of oligo (ethylene glycol) (OEG) linkage enhanced the n-doping effect of PDI polymers, leading to an improved ability of the CIL to reduce work function and improve electron transporting capability. Moreover, the introduction of the non-ionic OEG chain effectively improve the wetting property and solvent resistance of PDI polymers, so the PPDINN CIL can withstand diverse processing conditions in fabricating different OSCs, including conventional, inverted and blade-coated devices. The binary OSC with conventional structure using PPDINN CIL showed a PCE of 18.6%, along with an improved device stability. Besides, PPDINN is compatible with the large-area blade-coating technique, and a PCE of 16.6% was achieved in the 1-cm2 OSC where a blade-coated PPDINN was used.

3.
ACS Appl Mater Interfaces ; 16(17): 22238-22247, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38634459

RESUMO

Closely aligned configuration of the donor (D) and acceptor (A) is crucial for the light-emitting efficiency of thermally activated delayed fluorescence (TADF) materials with through-space charge transfer (TSCT) characteristics. However, precisely controlling the D-A distance of blue TSCT-TADF emitters is still challenging. Herein, an extra donor (D*) located on the side of the primary donor (D) is introduced to construct the hydrogen bonding with A and thus modulate the distance of D and A units to prepare high-efficiency blue TSCT emitters. The obtained "V"-shaped TSCT emitter presents a minimal D-A distance of 2.890 Å with a highly parallel D-A configuration. As a result, a high rate of radiative decay (>107 s-1) and photoluminescence quantum yield (nearly 90%) are achieved. The corresponding blue organic light-emitting diodes show maximum external quantum efficiencies (EQEmax) of 27.9% with a Commission Internationale de L'Eclairage (CIE) coordinate of (0.16, 0.21), which is the highest device efficiency of fluorene-based blue TSCT-TADF emitters. In addition, the TSCT-TADF emitter-sensitized OLEDs also achieve a high EQEmax of 29.3% with a CIE coordinate of (0.12, 0.16) and a narrow emission.

4.
Macromol Rapid Commun ; 45(14): e2400102, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38648071

RESUMO

The II-I phase transition of isotactic poly(1-butene) (iPBu) leads to improved mechanical performance. However, this will take several weeks and increase storage and processing costs. In this work, shear forces are introduced into the supercooled iPBu melt, and the effects of isothermal crystallization temperature (Tc) and shear temperature (Tshear) on crystallization and phase transition are explored. Shear-induced transcrystalline morphology of Form II with a significantly shortened crystallization induction period can be observed at relatively high Tc (105 °C). Besides, the shear-induced Form II can transit to Form I faster than the unsheared one. In addition, the phase transition rate increases as the Tshear decreases, with the fastest rate occurring at Tshear of 120 °C. The half transition time (t1/2) is measured as 6.3 h when Tc = 105 °C, Tshear = 120 °C, which is much shorter than the 20.7 h required for unsheared samples. The accelerated phase transition of iPBu can be attributed to the stretching of molecular chains, resulting from shear treatment. This study provides a quantitative analysis of the influence of the shear treatment and the Tshear on the II-I phase transition rate. It also presents a cost-effective and straightforward approach for expediting the phase transition process.


Assuntos
Transição de Fase , Polienos/química , Cristalização , Temperatura , Polímeros/química , Resistência ao Cisalhamento
5.
Angew Chem Int Ed Engl ; 63(11): e202319380, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38246876

RESUMO

Organic light-emitting transistors (OLETs) are highly integrated and minimized optoelectronic devices with significant potential superiority in smart displays and optical communications. To realize these various applications, it is urgently needed for color-tunable emission in OLETs, but remains a great challenge as a result of the difficulty for designing organic semiconductors simultaneously integrating high carrier mobility, strong solid-state emission, and the ability for potential tunable colors. Herein, a high mobility emissive excimer organic semiconductor, 2,7-di(2-anthryl)-9H-fluorene (2,7-DAF) was reasonably designed by introducing a rotatable carbon-carbon single bond connecting two anthracene groups at the 2,7-sites of fluorene, and the small torsion angles simultaneously guarantee effective conjugation and suppress fluorescence quenching. Indeed, the unique stable dimer arrangement and herringbone packing mode of 2,7-DAF single crystal enables its superior integrated optoelectronic properties with high carrier mobility of 2.16 cm2 ⋅ V-1 ⋅ s-1 , and strong excimer emission with absolute photoluminescence quantum yield (PLQY) of 47.4 %. Furthermore, the voltage-dependent electrically induced color-tunable emission from orange to blue was also demonstrated for an individual 2,7-DAF single crystal based OLETs for the first time. This work opens the door for a new class of high mobility emissive excimer organic semiconductors, and provides a good platform for the study of color-tunable OLETs.

6.
ACS Appl Mater Interfaces ; 16(1): 1225-1233, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112452

RESUMO

Constructing high-performance solution-processed organic light-emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) conjugated polymers remains a challenging issue. The electron-withdrawing ability of acceptors in TADF units significantly affects the TADF properties of the conjugated polymers. Herein, we have designed three TADF conjugated polymers, in which phenoxazine donors and anthracen-9(10H)-one acceptors are incorporated into the polymeric backbones and side chains, respectively, and the carbazole derivative is copolymerized as the host. By incorporating different heteroatoms, such as nitrogen, oxygen, or sulfur, with slightly different electronegativities into anthracen-9(10H)-one, the effect of the electron-withdrawing ability of the acceptor on the performance of conjugated TADF polymer-based OLEDs is thus systematically studied. It is found that the introduction of a nitrogen atom can enhance the spin-orbital coupling and RISC process due to the modulated energy levels and nature of the excited states. As a result, the solution-processed OLEDs based on the prepared polymer p-PXZ-XN display an excellent comprehensive performance with an EQEmax of 17.6%, a low turn-on voltage of 2.8 V, and a maximum brightness of 14750 cd m-2. Notably, the efficiency roll-off is quite low, maintaining 15.1% at 1000 cd m-2, 12.1% at 3000 cd m-2, and 6.1% at 10000 cd m-2, which ranks in the first tier among the reported TADF conjugated polymers. This work provides a guideline for constructing high-efficiency TADF polymers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA