Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 129: 155618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678949

RESUMO

BACKGROUND: Vascular calcification refers to the abnormal accumulation of calcium in the walls of blood vessels and is a risk factor often overlooked in cardiovascular disease. However, there is currently no specific drug for treating vascular calcification. Compound Danshen Dripping Pill (CDDP) is widely used to treat cardiovascular diseases, but its effect on vascular calcification has not been reported. PURPOSE: We investigated the effects of CDDP on vascular calcification in ApoE-/- mice and in vitro and elucidated its mechanism of action. STUDY DESIGN: Firstly, we found that CDDP has the potential to improve calcification based on network pharmacology analysis. Then, we performed the following experiments: in vivo, ApoE-/- mice were fed a high-fat diet randomly supplemented with CDDP for 16 weeks. Atherosclerosis and vascular calcification were determined. In vitro, human aortic smooth muscle cells (HASMCs), human umbilical vein endothelial cells (HUVECs), and human aortic endothelial cells (HAECs) were used to determine the mechanisms for CDDP-inhibited vascular calcification. RESULTS: In this study, we observed that CDDP reduced intimal calcification in atherosclerotic lesions of ApoE-deficient mice fed a high-fat diet, as well as the calcification in cultured SMCs and ECs. Mechanistically, CDDP inhibited the Wnt/ß-catenin pathway by up-regulating the expression of DKK1 and LRP6, which are upstream inhibitors of Wnt, leading to a reduction in the expression of osteoblastic transition markers (ALP, OPN, BMP2, and RUNX2). Furthermore, CDDP enhanced the secretion of DKK1, which plays a role in mediating EC-SMC crosstalk in calcification. Additionally, VC contributes to vascular aging by inhibiting Sirt1 and increasing senescence parameters (SA-ß-gal, p21, and p16). However, CDDP reversed these changes by activating Sirt1. CDDP also reduced the levels of pro-inflammatory cytokines and the senescence-associated secretory phenotype in vivo and in vitro. CONCLUSIONS: Our study suggests that CDDP reduces vascular calcification by regulating the DKK1/LRP6/ß-catenin signaling pathway in ECs/SMCs and interactions with the crosstalk of ECs and SMCs. It also reduces the senescence of ECs/SMCs, contributing to the Sirt1 activation, indicating CDDP's novel role in ameliorating vascular calcification.


Assuntos
Aterosclerose , Dieta Hiperlipídica , Medicamentos de Ervas Chinesas , Células Endoteliais da Veia Umbilical Humana , Salvia miltiorrhiza , Calcificação Vascular , Animais , Calcificação Vascular/tratamento farmacológico , Humanos , Medicamentos de Ervas Chinesas/farmacologia , Salvia miltiorrhiza/química , Masculino , Dieta Hiperlipídica/efeitos adversos , Aterosclerose/tratamento farmacológico , Camundongos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Sirtuína 1/metabolismo , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/efeitos dos fármacos , Apolipoproteínas E/genética , Farmacologia em Rede , Via de Sinalização Wnt/efeitos dos fármacos , Aorta/efeitos dos fármacos , Canfanos , Peptídeos e Proteínas de Sinalização Intercelular , Panax notoginseng
2.
EMBO Rep ; 25(4): 2097-2117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38532128

RESUMO

High fructose intake during pregnancy increases insulin resistance (IR) and gestational diabetes mellitus (GDM) risk. IR during pregnancy primarily results from elevated hormone levels. We aim to determine the role of liver carbohydrate response element binding protein (ChREBP) in insulin sensitivity and lipid metabolism in pregnant mice and their offspring. Pregnant C57BL/6J wild-type mice and hepatocyte-specific ChREBP-deficient mice were fed with a high-fructose diet (HFrD) or normal chow diet (NC) pre-delivery. We found that the combination of HFrD with pregnancy excessively activates hepatic ChREBP, stimulating progesterone synthesis by increasing MTTP expression, which exacerbates IR. Increased progesterone levels upregulated hepatic ChREBP via the progesterone-PPARγ axis. Placental progesterone activated the progesterone-ChREBP loop in female offspring, contributing to IR and lipid accumulation. In normal dietary conditions, hepatic ChREBP modestly affected progesterone production and influenced IR during pregnancy. Our findings reveal the role of hepatic ChREBP in regulating insulin sensitivity and lipid homeostasis in both pregnant mice consuming an HFrD and female offspring, and suggest it as a potential target for managing gestational metabolic disorders, including GDM.


Assuntos
Resistência à Insulina , Gravidez , Feminino , Camundongos , Animais , Resistência à Insulina/genética , Frutose/efeitos adversos , Frutose/metabolismo , Progesterona/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Fígado/metabolismo , Lipídeos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo
3.
Cell Biol Toxicol ; 40(1): 10, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319449

RESUMO

Lung cancer is the most common cause of cancer-related deaths worldwide and is caused by multiple factors, including high-fat diet (HFD). CD36, a fatty acid receptor, is closely associated with metabolism-related diseases, including cardiovascular disease and cancer. However, the role of CD36 in HFD-accelerated non-small-cell lung cancer (NSCLC) is unclear. In vivo, we fed C57BL/6J wild-type (WT) and CD36 knockout (CD36-/-) mice normal chow or HFD in the presence or absence of pitavastatin 2 weeks before subcutaneous injection of LLC1 cells. In vitro, A549 and NCI-H520 cells were treated with free fatty acids (FFAs) to mimic HFD situation for exploration the underlying mechanisms. We found that HFD promoted LLC1 tumor growth in vivo and that FFAs increased cell proliferation and migration in A549 and NCI-H520 cells. The enhanced cell or tumor growth was inhibited by the lipid-lowering agent pitavastatin, which reduced lipid accumulation. More importantly, we found that plasma soluble CD36 (sCD36) levels were higher in NSCLC patients than those in healthy ones. Compared to that in WT mice, the proliferation of LLC1 cells in CD36-/- mice was largely suppressed, which was further repressed by pitavastatin in HFD group. At the molecular level, we found that CD36 inhibition, either with pitavastatin or plasmid, reduced proliferation- and migration-related protein expression through the AKT/mTOR pathway. Taken together, we demonstrate that inhibition of CD36 expression by pitavastatin or other inhibitors may be a viable strategy for NSCLC treatment.


Assuntos
Antígenos CD36 , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Ácidos Graxos , Neoplasias Pulmonares/tratamento farmacológico , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-akt , Antígenos CD36/genética
4.
Food Funct ; 13(18): 9576-9588, 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36000402

RESUMO

Heart failure (HF) is a clinical syndrome characterized by typical symptoms that usually occur at the end stage of various heart diseases and lead to death. Daidzein (DAI), an isoflavone found in soy foods, is widely used to treat menopausal syndrome, prostate cancer, breast cancer, heart disease, cardiovascular disease, and osteoporosis, and has anti-oxidant and anti-inflammatory properties. However, the effects of DAI in HF remain unknown. In this study, doxorubicin (DOX) was used to establish HF models of C57BL/6J mice and H9c2 cells with DAI treatment. Our results showed that DAI markedly improved the DOX-induced decline in cardiac function, and decreased the left ventricular ejection fraction, cardiac inflammation, oxidative stress, apoptosis, and fibrosis. Mechanistically, DAI affects cardiac energy metabolism by regulating SIRT3, and meets the ATP demand of the heart by improving glucose, lipid, and ketone body metabolism as well as restoring mitochondrial dysfunction in vivo and in vitro. Additionally, DAI can exert an antioxidant function and alleviate HF through the SIRT3/FOXO3a pathway. In conclusion, we demonstrate that DAI alleviates DOX-induced cardiotoxicity by regulating cardiac energy metabolism as well as reducing inflammation, oxidative stress, apoptosis and fibrosis, indicating its potential application for HF treatment.


Assuntos
Insuficiência Cardíaca , Isoflavonas , Sirtuína 3 , Trifosfato de Adenosina/metabolismo , Animais , Antioxidantes/farmacologia , Apoptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/metabolismo , Doxorrubicina/efeitos adversos , Fibrose , Glucose/metabolismo , Insuficiência Cardíaca/induzido quimicamente , Insuficiência Cardíaca/tratamento farmacológico , Inflamação/metabolismo , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Cetonas , Lipídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos , Estresse Oxidativo , Transdução de Sinais , Sirtuína 3/genética , Sirtuína 3/metabolismo , Volume Sistólico , Função Ventricular Esquerda
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...