Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sci Food Agric ; 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385827

RESUMO

BACKGROUND: Hot compressed water (HCW), also known as subcritical water (SCW), refers to high-temperature compressed water in a special physical and chemical state. It is an emerging technology for natural product extraction. The volatile organic compounds (VOCs) generated from the Maillard reaction between l-ascorbic acid (ASA) and l-cysteine (Cys) have attracted significant interest in the flavor and fragrance industry. This study aimed to explore the formation mechanism of VOCs from ASA and Cys and examine the effects of reaction parameters such as temperature, time, and pH in HCW. RESULTS: The identified VOCs were predominantly thiophene derivatives, polysulfides, and pyrazine derivatives in HCW. The findings indicated that thiophene derivatives were formed under various pH conditions, with polysulfide formation favored under acidic conditions and pyrazine derivative formation preferred under weak alkaline conditions, specifically at pH 8.0. CONCLUSION: The Maillard reaction between ASA and Cys mainly produced thiophene derivatives, polysulfides, and pyrazine derivatives in HCW. The generation mechanism was significantly dependent on the surrounding pH conditions. © 2024 Society of Chemical Industry.

2.
Front Immunol ; 14: 1285801, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077392

RESUMO

γδ T cells, a specialized subset of T lymphocytes, have garnered significant attention within the realm of cancer immunotherapy. Operating at the nexus between adaptive and innate immunological paradigms, these cells showcase a profound tumor discernment repertoire, hinting at novel immunotherapeutic strategies. Significantly, these cells possess the capability to directly identify and eliminate tumor cells without reliance on HLA-antigen presentation. Furthermore, γδ T cells have the faculty to present tumor antigens to αß T cells, amplifying their anti-tumoral efficacy.Within the diverse and heterogeneous subpopulations of γδ T cells, distinct immune functionalities emerge, manifesting either anti-tumor or pro-tumor roles within the tumor microenvironment. Grasping and strategically harnessing these heterogeneous γδ T cell cohorts is pivotal to their integration in tumor-specific immunotherapeutic modalities. The aim of this review is to describe the heterogeneity of the γδ T cell lineage and the functional plasticity it generates in the treatment of malignant tumors. This review endeavors to elucidate the intricate heterogeneity inherent to the γδ T cell lineage, the consequential functional dynamics in combating malignancies, the latest advancements from clinical trials, and the evolving landscape of γδ T cell-based oncological interventions, while addressing the challenges impeding the field.


Assuntos
Neoplasias , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Imunoterapia , Antígenos de Neoplasias , Apresentação de Antígeno , Microambiente Tumoral
3.
Heliyon ; 9(4): e14795, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37025812

RESUMO

A circle/sphere populating method is proposed to generate 2D/3D stochastic microstructures. The proposed method uses circles/spheres as the basic elements and generates microstructure features through the populating process of the circles/spheres. In the populating process, the cores are first generated randomly and circles/spheres start to populate around the cores or the previous generation's circles/spheres. The populating process is controlled by the input parameters including the volume fraction, core number, circle/sphere size distribution, circle/sphere populating distance distribution, circle/sphere populating number, and populating direction constraint angle. The proposed method was compared with the QSGS method and random circle/sphere method in 2-dimensional (2D) and 3-dimensional (3D) cases. The proposed method shows advantages in generating microstructures with clear feature geometries and boundaries. Furthermore, parametric studies are conducted in 2D and 3D to investigate the effect of input parameters on the generated microstructures. With the consideration of circle/sphere spatial distributions, the proposed method can achieve different degrees of feature clustering and agglomerating. A wide range of microstructure morphologies can be achieved by adjusting the input parameters. A more accurate description of the features in the microstructures can be achieved without the involvement of the annealing-based optimization process. As a case study, the proposed method was used to generate sandstone microstructures with different grain size distributions and spatial distributions, and the permeability of generated sandstone was analyzed. Furthermore, the proposed method was applied to generate the microstructure model with a target radial distribution function to demonstrate its computational efficiency by comparing it with the random sphere method and simulated annealing based method.

4.
Sci Total Environ ; 857(Pt 2): 159535, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270376

RESUMO

The landfill is still the primary waste treatment method in developing countries. Due to the long stability time and long-term occupation of a large amount of land, the landfill poses a significant threat to the ecological environment and affects the process of urbanization. This study conducted a landfill simulation reactor (LSR) experiment to achieve rapid landfill stabilization through micro-aeration and leachate recirculation. More than 60 % of the degradable organic carbon in the enhanced process (LSR-IV contains 24 % of the retained carbon) can be relatively quickly converted to a gaseous state, which is nearly half higher than the degradation efficiency of the traditional process (LSR-I contains 59.3 % of the retained carbon). A comprehensive environmental assessment is developed for the enhanced process, and better environmental benefits are obtained from the whole landfill process. Compared with conventional treatment process, the enhanced process is applied to the actual landfill to analyze the economic cost. In terms of the total cost, the enhanced process cost (60.1 CNY) is about 44 % lower than the conventional landfill process cost (107.6 CNY). The enhanced process saves nearly half of the time cost and reduces the cost of land acquisition. This study can provide a reference for governmental and municipal administrations to carry out the technological transformation of traditional landfills from the aspects of technology, economy and environment.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Poluentes Químicos da Água/análise , Instalações de Eliminação de Resíduos , Carbono , Reatores Biológicos
5.
Materials (Basel) ; 15(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36363057

RESUMO

Tram or light rail systems are heavily relied upon for passenger transit; however, low-carbon steel grades commonly used in special trackwork, such as in switches, are prone to wear, rolling contact fatigue (RCF), and deformation under cyclic wheel-rail contact. To address this, laser cladding can be used to apply a metal coating to protect the underlying substrate and rebuild the worn rail profiles. Laser cladding may also be applied to remove cracking by rebuilding the rail head. The tribological characteristics of light rail components after laser cladding with Stellite 6 and a newly developed martensitic stainless steel were investigated, using roller-on-disc wear testing. Analysis of the microstructure, mechanical properties, and wear performance was undertaken to develop a comprehensive understanding of the influence of the laser cladding type on the wear and surface fatigue performance. Both cladding alloys significantly improved the tribological performance. These findings were compared to those for a laser cladded hypereutectoid rail type (reported in our previous study). It was found that laser cladding with a suitable alloy was an effective technique for improving the tribological properties, increasing the wear resistance, and increasing the retardation of cracking on both substrates. These findings suggest laser cladding may be used to repair light rail components, and this technique can be optimized to suit different rail grades. This makes laser cladding a flexible and versatile maintenance strategy, in both coating and repair applications, to prolong the operational lifetime of critical components for the railway industry.

6.
Materials (Basel) ; 15(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35955387

RESUMO

The development of a laser cladding repair strategy is critical for the continued growth of heavy-haul railway networks. Premium hypereutectoid rails have undergone laser cladding using a new martensitic stainless-steel alloy, 415SS, developed for high carbon rails after standard cladding metals were found to be incompatible. Non-destructive neutron diffraction techniques were used to measure the residual stress in different layers generated across a dissimilar metal joint during laser cladding. The internal stress distribution across the cladding, heat-affected zone (HAZ), and substrate was measured in the untempered rail, after 350 °C and 540 °C heat treatment procedures and two surface grinding operations. The martensitic 415SS depositions produce compressive stress in the cladding, regardless of tempering procedures, which may inhibit fatigue crack propagation whilst grinding operations locally relive surface stress. Balancing tensile stresses were recorded below the fusion boundary in the HAZ due to thermal gradients altering the microstructure. The combination of 540 °C tempering and 0.5 mm surface layer removal produced a desirable combination of compression in the cladding deposition with significantly reduced tensile stresses in the HAZ. A comparison with the current literature shows that this alloy achieves a unique combination of desirable hardness, low tensile stress, and compression in the cladding layer. Data obtained during strain scanning has been used to determine the location of microstructural changes at the fusion boundary and HAZ through correlation of the stress, strain, full width at half maximum (FWHM), and intensity profiles. Therefore, neutron diffraction can be used for both the accurate measurement of internal residual stress and to obtain microstructural information of a metallurgical join non-destructively.

7.
Materials (Basel) ; 16(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36614569

RESUMO

Manufacturing and maintenance procedures in the railway industry regularly implement welding and metal deposition operations to produce joints, coatings and repair structures. During these processes, residual stresses arise through the generation of heat affected zones and plastic deformation. This makes accurate measurements of the internal stresses a critical aspect of manufacturing, monitoring, repair and model validation in the develop new metallic coating and joining technologies. Selection of an appropriate residual stress measurement method has many important factors including component size, resolution and the magnitude and location of internal stresses, often resulting in a combination of techniques required to obtain complete assessment of the stress state. This paper offers a review of residual stress measurement techniques for railway components including rail joints and coatings through comparison of destructive and non-destructive approaches, their measurement capabilities, benefits and limitations. A comprehensive discussion of different applications is provided with a summary of facilities available to both research and industry.

8.
Front Genet ; 12: 728472, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34868206

RESUMO

Uncovering the genetic architecture for grain yield (GY)-related traits is important for wheat breeding. To detect stable loci for GY-related traits, a genome-wide association study (GWAS) was conducted in a diverse panel, which included 251 elite spring wheat accessions mainly from the Northeast of China. In total, 52,503 single nucleotide polymorphisms (SNPs) from the wheat 55 K SNP arrays were used. Thirty-eight loci for GY-related traits were detected and each explained 6.5-16.7% of the phenotypic variations among which 12 are at similar locations with the known genes or quantitative trait loci and 26 are likely to be new. Furthermore, six genes possibly involved in cell division, signal transduction, and plant development are candidate genes for GY-related traits. This study provides new insights into the genetic architecture of GY and the significantly associated SNPs and accessions with a larger number of favorable alleles could be used to further enhance GY in breeding.

9.
Phys Rev E ; 104(1-2): 015316, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34412307

RESUMO

A descriptor-based method combined with a partition approach is proposed to reconstruct three-dimensional (3D) microstructures based on a set of two-dimensional (2D) scanning electron microscopy (SEM) images. The features in the SEM images are identified and partitioned into small features using the watershed algorithm. The watershed algorithm first finds the local gray-level maxima, and partitions the features through the gray-level local minima. The 3D size distribution and radial distribution of the small spherical elements are inferred, respectively, based on the 2D size distribution and radial distribution using stereological analysis. The 3D microstructures are reconstructed by matching the inferred size distribution and radial distribution through a simulated annealing-based procedure. Combining with the proposed partition approach, the descriptor-based method can be applied to complex microstructures and the computational efficiency of the reconstruction can be largely improved. A case study is presented using a set of 2D SEM images with nanoscale pore structure from the low-density CSH (calcium silicate hydrate) phase of a hardened cement paste. Cross sections were randomly selected from the reconstructed 3D microstructure and compared with the original SEM images using the pore descriptors and the two-point correlation function with satisfactory agreement. Using the 3D reconstructed model, the properties of the sample material can be investigated on such a small scale as demonstrated in this paper on quantifying the absolute permeability.

10.
iScience ; 24(6): 102524, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34142037

RESUMO

With the development of modern industries, the sustainability of critical resources has attracted worldwide attention considering the entire supply chain. With a large industrial sector size in China, a safe supply of metal resources is crucial to ensure the effective operation of the whole industry. Although specific criticality analyses have been applied to identify critical resources in some regions, including Europe and the USA, they are not ready to be directly applied in the case of China because the structure of China's industry is remarkably different from other areas. In this research, a three-dimensional methodology considering supply safety, domestic economy, and environmental risk is demonstrated, where Chinese industrial conditions are specifically considered. In total, 64 materials were introduced to perform the criticality assessment, and 18 metals were classified with a high criticality degree in the three-dimensional criticality space. With the obtained findings decision-makers can formulate strategic deployment to promote resource management.

11.
J Neurotrauma ; 38(8): 967-982, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32394788

RESUMO

Although concussions can result in persistent neurological post-concussion symptoms, they are typically invisible on routine magnetic resonance imaging (MRI) scans. Our study aimed to investigate the use of ultra-high-field diffusion tensor imaging (UHF-DTI) in discerning severity-dependent microstructural changes in the mouse brain following a concussion. Twenty-three C57BL/6 mice were randomly allocated into three groups: the low concussive (LC, n = 9) injury group, the high concussive (HC, n = 6) injury group, and the sham control (SC, n = 7) group. Mice were perfused on day 2 post-injury, and the brains were scanned on a 16.4T MRI scanner with UHF-DTI and neurite orientation dispersion imaging (NODDI). Finite element analysis (FEA) was performed to determine the pattern and extent of the physical impact on the brain tissue. MRI findings were correlated with histopathological analysis in a subset of mice. In the LC group, increased fractional anisotropy (FA) and decreased orientation dispersion index (ODI) but limited neurite density index (NDI) changes were found in the gray matter, and minimal changes to white matter (WM) were observed. The HC group presented increased mean diffusivity (MD), decreased NDI, and decreased ODI in the WM and gray matter (GM); decreased FA was also found in a small area of the WM. WM changes were associated with WM degeneration and neuroinflammation. FEA showed varying region-dependent degrees of stress, in line with the different imaging findings. This study provides evidence that UHF-DTI combined with NODDI can detect concussions of variable intensities. This has significant implications for the diagnosis of concussion in humans.


Assuntos
Concussão Encefálica/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Análise de Elementos Finitos , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reflexo de Endireitamento/fisiologia
12.
PLoS Comput Biol ; 16(10): e1008300, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33035221

RESUMO

Large nuclear deformations during migration through confined spaces have been associated with nuclear membrane rupture and DNA damage. However, the stresses associated with nuclear damage remain unclear. Here, using a quasi-static plane strain finite element model, we map evolution of nuclear shape and stresses during confined migration of a cell through a deformable matrix. Plastic deformation of the nucleus observed for a cell with stiff nucleus transiting through a stiffer matrix lowered nuclear stresses, but also led to kinking of the nuclear membrane. In line with model predictions, transwell migration experiments with fibrosarcoma cells showed that while nuclear softening increased invasiveness, nuclear stiffening led to plastic deformation and higher levels of DNA damage. In addition to highlighting the advantage of nuclear softening during confined migration, our results suggest that plastic deformations of the nucleus during transit through stiff tissues may lead to bending-induced nuclear membrane disruption and subsequent DNA damage.


Assuntos
Movimento Celular/fisiologia , Núcleo Celular/fisiologia , Modelos Biológicos , Linhagem Celular Tumoral , Dano ao DNA , Análise de Elementos Finitos , Humanos , Membrana Nuclear/fisiologia
13.
Mol Cells ; 43(9): 793-803, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32863280

RESUMO

Myeloid-derived suppressor cells (MDSCs) promote tumour progression by contributing to angiogenesis, immunosuppression, and immunotherapy resistance. Although recent studies have shown that microRNAs (miRNAs) can promote the expansion of MDSCs in the tumour environment, the mechanisms involved in this process are largely unknown. Here, we report that microRNA 449c (miR-449c) expression was upregulated in myeloid progenitor cells upon activation of C-X-C motif chemokine receptor 2 (CXCR2) under tumour conditions. MiR-449c upregulation increased the generation of monocytic MDSCs (mo-MDSCs). The increased expression of miR-449c could target STAT6 mRNA in myeloid progenitor cells to shift the differentiation balance of myeloid progenitor cells and lead to an enhancement of the mo-MDSCs population in the tumour environment. Thus, our results demonstrate that the miR-449c/STAT6 axis is involved in the expansion of mo-MDSCs from myeloid progenitor cells upon activation of CXCR2, and thus, inhibition of miR-449c/STAT6 signalling may help to attenuate tumour progression.


Assuntos
Melanoma Experimental/metabolismo , MicroRNAs/metabolismo , Monócitos/metabolismo , Fator de Transcrição STAT6/metabolismo , Animais , Feminino , Células HEK293 , Humanos , Melanoma Experimental/genética , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/biossíntese , MicroRNAs/genética , Monócitos/patologia , Células Supressoras Mieloides/metabolismo , Células Supressoras Mieloides/patologia , Fator de Transcrição STAT6/genética
14.
Sci Rep ; 8(1): 14726, 2018 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-30282998

RESUMO

Laser material deposition based restoration of high-value components can be a revolutionary technology in remanufacturing. The deposition process induces residual stresses due to thermomechanical behavior and metallurgical transformations. The presence of tensile residual stresses in the deposited layer will compromise the fatigue life of the restored component. We have developed a novel fully coupled metallurgical, thermal and mechanical (metallo-thermomechanical) model to predict residual stresses and identified a critical deposition height, which ensures compressive residual stresses in the deposited layer. Any lower deposition height will result in tensile residual stresses and higher deposition height will result in excessive dilution (substrate melting). We have validated the model using neutron and micro-focus X-ray diffraction measurements. This study highlights that the critical deposition height corresponds to the minimum cooling rate during solidification. It addresses one of the major outstanding problems of additive manufacturing and paves a way for "science-enabled-technology" solutions for sustainable restoration/remanufacturing.

15.
Nanotechnology ; 29(36): 365705, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-29889049

RESUMO

High-resolution single-cell imaging in their native or near-native state has received considerable interest for decades. In this research, we present an innovative approach that can be employed to study both morphological and nano-mechanical properties of hydrated single bacterial cells. The proposed strategy is to encapsulate wet cells with monolayer graphene with a newly developed water membrane approach, followed by imaging with both electron microscopy (EM) and atomic force microscopy (AFM). A computational framework was developed to provide additional insights, with the detailed nanoindentation process on graphene modelled based on the finite element method. The model was first validated by calibration with polymer materials of known properties, and the contribution of graphene was then studied and corrected to determine the actual moduli of the encapsulated hydrated sample. Application of the proposed approach was performed on hydrated bacterial cells (Klebsiella pneumoniae) to correlate the structural and mechanical information. EM and energy-dispersive x-ray spectroscopy imaging confirmed that the cells in their near-native stage can be studied inside the miniaturised environment enabled with graphene encapsulation. The actual moduli of the encapsulated hydrated cells were determined based on the developed computational model in parallel, with results comparable with those acquired with wet AFM. It is expected that the successful establishment of controlled graphene encapsulation offers a new route for probing liquid/live cells with scanning probe microscopy, as well as correlative imaging of hydrated samples for both biological and material sciences.


Assuntos
Grafite/química , Klebsiella pneumoniae/citologia , Nanopartículas/química , Simulação por Computador , Análise de Elementos Finitos , Klebsiella pneumoniae/ultraestrutura , Microscopia de Força Atômica , Nanopartículas/ultraestrutura
16.
J Biomech Eng ; 139(10)2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28753685

RESUMO

When simulating or conducting land mine blast tests on armored vehicles to assess potential occupant injury, the preference is to use the Hybrid III anthropomorphic test device (ATD). In land blast events, neither the effect of body-borne equipment (BBE) on the ATD response nor the dynamic response index (DRI) is well understood. An experimental study was carried out using a drop tower test rig, with a rigid seat mounted on a carriage table undergoing average accelerations of 161 g and 232 g over 3 ms. A key aspect of the work looked at the various lumbar spine assemblies available for a Hybrid III ATD. These can result in different load cell orientations for the ATD which in turn can affect the load measurement in the vertical and horizontal planes. Thirty-two tests were carried out using two BBE mass conditions and three variations of ATDs. The latter were the Hybrid III with the curved (conventional) spine, the Hybrid III with the pedestrian (straight) spine, and the Federal Aviation Administration (FAA) Hybrid III which also has a straight spine. The results showed that the straight lumbar spine assemblies produced similar ATD responses in drop tower tests using a rigid seat. In contrast, the curved lumbar spine assembly generated a lower pelvis acceleration and a higher lumbar load than the straight lumbar spine assemblies. The maximum relative displacement of the lumbar spine occurred after the peak loading event, suggesting that the DRI is not suitable for assessing injury when the impact duration is short and an ATD is seated on a rigid seat on a drop tower. The peak vertical lumbar loads did not change with increasing BBE mass because the equipment mass effects did not become a factor during the peak loading event.


Assuntos
Vértebras Lombares/anatomia & histologia , Vértebras Lombares/fisiologia , Teste de Materiais/instrumentação , Aceleração , Desenho de Equipamento , Explosões , Humanos , Temperatura , Suporte de Carga
17.
Comput Methods Biomech Biomed Engin ; 20(6): 602-616, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28090780

RESUMO

Traumatic brain injury (TBI), induced by impact of an object with the head, is a major health problem worldwide. Rats are a well-established animal analogue for study of TBI and the weight-drop impact-acceleration (WDIA) method is a well-established model in rats for creating diffuse TBI, the most common form of TBI seen in humans. However, little is known of the biomechanics of the WDIA method and, to address this, we have developed a four-degrees-of-freedom multi-body mass-spring-damper model for the WDIA test in rats. An analytical expression of the maximum skull acceleration, one of the important head injury predictor, was derived and it shows that the maximum skull acceleration is proportional to the impact velocity but independent of the impactor mass. Furthermore, a dimensional analysis disclosed that the maximum force on the brain and maximum relative displacement between brain and skull are also linearly proportional to impact velocity. Additionally, the effects of the impactor mass were examined through a parametric study from the developed multi-body dynamics model. It was found that increasing impactor mass increased these two brain injury predictors.


Assuntos
Lesões Encefálicas/fisiopatologia , Aceleração , Animais , Fenômenos Biomecânicos , Peso Corporal , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Humanos , Modelos Teóricos , Análise Numérica Assistida por Computador , Ratos , Crânio/fisiopatologia
18.
Nat Commun ; 7: 11972, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27325441

RESUMO

Driven by the increasing demand for micro-/nano-technologies, stimuli-responsive shape memory materials at nanoscale have recently attracted great research interests. However, by reducing the size of conventional shape memory materials down to approximately nanometre range, the shape memory effect diminishes. Here, using density functional theory calculations, we report the discovery of a shape memory effect in a two-dimensional atomically thin graphene oxide crystal with ordered epoxy groups, namely C8O. A maximum recoverable strain of 14.5% is achieved as a result of reversible phase transition between two intrinsically stable phases. Our calculations conclude co-existence of the two stable phases in a coherent crystal lattice, giving rise to the possibility of constructing multiple temporary shapes in a single material, thus, enabling highly desirable programmability. With an atomic thickness, excellent shape memory mechanical properties and electric field stimulus, the discovery of a two-dimensional shape memory graphene oxide opens a path for the development of exceptional micro-/nano-electromechanical devices.

19.
Acta Biomater ; 21: 132-41, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25839121

RESUMO

Understanding the heterogeneity of biological structures, particularly at the micro/nano scale can offer insights valuable for multidisciplinary research in tissue engineering and biomimicry designs. Here we propose to combine nanocharacterisation tools, particularly Focused Ion Beam (FIB) and Atomic Force Microscopy (AFM) for three dimensional mapping of mechanical modulus and chemical signatures. The prototype platform is applied to image and investigate the fundamental mechanics of the rat face whiskers, a high-acuity sensor used to gain detailed information about the world. Grazing angle FIB milling was first applied to expose the interior cross section of the rat whisker sample, followed by a "lift-out" method to retrieve and position the target sample for further analyses. AFM force spectroscopy measurements revealed a non-uniform pattern of elastic modulus across the cross section, with a range from 0.8GPa to 13.5GPa. The highest elastic modulus was found at the outer cuticle region of the whisker, and values gradually decreased towards the interior cortex and medulla regions. Elemental mapping with EDS confirmed that the interior of the rat whisker is dominated by C, O, N, S, Cl and K, with a significant change of elemental distribution close to the exterior cuticle region. Based on these data, a novel comprehensive three dimensional (3D) elastic modulus model was constructed, and stress distributions under realistic conditions were investigated with Finite Element Analysis (FEA). The simulations could well account for the passive whisker deflections, with calculated resonant frequency as well as force-deflection for the whiskers being in good agreement with reported experimental data. Limitations and further applications are discussed for the proposed FIB/AFM approach, which holds good promise as a unique platform to gain insights on various heterogeneous biomaterials and biomechanical systems.


Assuntos
Microscopia de Força Atômica/métodos , Vibrissas , Animais , Feminino , Análise de Elementos Finitos , Ratos , Ratos Sprague-Dawley
20.
Zhongguo Zhong Yao Za Zhi ; 39(13): 2438-49, 2014 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-25276960

RESUMO

The genus Myristica (Myristicaceae) consists of 120 species, which were distributed in South Asia, from west Polynesia, Oceania, eastern India to the Philippines. Phytochemical studies showed that 164 compounds including a majority of lignans, along with phenglpropanoids, flavonoids and phenolics, have been isolated from this genus, which exhibited anti-microbial, anti-inflammatory, anticancer, hyperglycemic and hepatic protective activities. This article summarizes research progress of the chemical compositions and their pharmacological activities from this genus, which could provide reference for the in-depth development and utilization of the Myristica plants.


Assuntos
Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Myristicaceae/química , Plantas Medicinais/química , Animais , Tratamento Farmacológico , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...