Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Cell Death Dis ; 15(2): 129, 2024 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-38342917

RESUMO

Neural stem cells (NSCs) are critical for brain development and maintenance of neurogenesis. However, the molecular mechanisms that regulate NSC proliferation and differentiation remain unclear. Mysm1 is a deubiquitinase and is essential for the self-renewal and differentiation of several stem cells. It is unknown whether Mysm1 plays an important role in NSCs. Here, we found that Mysm1 was expressed in NSCs and its expression was increased with age in mice. Mice with Mysm1 knockdown by crossing Mysm1 floxed mice with Nestin-Cre mice exhibited abnormal brain development with microcephaly. Mysm1 deletion promoted NSC proliferation and apoptosis, resulting in depletion of the stem cell pool. In addition, Mysm1-deficient NSCs skewed toward neurogenesis instead of astrogliogenesis. Mechanistic investigations with RNA sequencing and genome-wide CUT&Tag analysis revealed that Mysm1 epigenetically regulated Id4 transcription by regulating histone modification at the promoter region. After rescuing the expression of Id4, the hyperproliferation and imbalance differentiation of Mysm1-deficient NSCs was reversed. Additionally, knockdown Mysm1 in aged mice could promote NSC proliferation. Collectively, the present study identified a new factor Mysm1 which is essential for NSC homeostasis and Mysm1-Id4 axis may be an ideal target for proper NSC proliferation and differentiation.


Assuntos
Células-Tronco Neurais , Proteases Específicas de Ubiquitina , Camundongos , Animais , Proteases Específicas de Ubiquitina/genética , Proteases Específicas de Ubiquitina/metabolismo , Endopeptidases/metabolismo , Transativadores/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Proliferação de Células/genética
2.
Heliyon ; 10(2): e24209, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38293468

RESUMO

The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused great harm to all countries worldwide. This disease can be prevented by vaccination and managed using various treatment methods, including injections, oral medications, or aerosol therapies. However, the selection of suitable compounds for the research and development of anti-SARS-CoV-2 drugs is a daunting task because of the vast databases of available compounds. The traditional process of drug research and development is time-consuming, labour-intensive, and costly. The application of chemometrics can significantly expedite drug R&D. This is particularly necessary and important for drug development against pandemic public emergency diseases, such as COVID-19. Through various chemometric techniques, such as quantitative structure-activity relationship (QSAR) modelling, molecular docking, and molecular dynamics (MD) simulations, compounds with inhibitory activity against SARS-CoV-2 can be quickly screened, allowing researchers to focus on the few prioritised candidates. In addition, the ADMET properties of the screened candidate compounds should be further explored to promote the successful discovery of anti-SARS-CoV-2 drugs. In this case, considerable time and economic costs can be saved while minimising the need for extensive animal experiments, in line with the 3R principles. This paper focuses on recent advances in chemometric modelling studies of COVID-19-related inhibitors, highlights current limitations, and outlines potential future directions for development.

3.
Front Mol Biosci ; 10: 1232875, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37670814

RESUMO

Introduction: The tumor microenvironment (TME) is crucial for the development of head and neck squamous cell carcinoma (HNSCC). However, the correlation of the characteristics of the TME and the prognosis of patients with HNSCC remains less known. Methods: In this study, we calculated the immune and stromal cell scores using the "estimate" R package. Kaplan-Meier survival and CIBERSORT algorithm analyses were applied in this study. Results: We identified seven new markers: FCGR3B, IGHV3-64, AC023449.2, IGKV1D-8, FCGR2A, WDFY4, and HBQ1. Subsequently, a risk model was constructed and all HNSCC samples were grouped into low- and high-risk groups. The results of both the Kaplan-Meier survival and receiver operating characteristic curve (ROC) analyses showed that the prognosis indicated by the model was accurate (0.758, 0.756, and 0.666 for 1-, 3- and 5-year survival rates). In addition, we applied the CIBERSORT algorithm to reveal the significant differences in the infiltration levels of immune cells between the two risk groups. Discussion: Our study elucidated the roles of the TME and identified new prognostic biomarkers for patients with HNSCC.

4.
Acta Pharm Sin B ; 13(6): 2778-2794, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37425054

RESUMO

Tolerogenic dendritic cells (tolDCs) facilitate the suppression of autoimmune responses by differentiating regulatory T cells (Treg). The dysfunction of immunotolerance results in the development of autoimmune diseases, such as rheumatoid arthritis (RA). As multipotent progenitor cells, mesenchymal stem cells (MSCs), can regulate dendritic cells (DCs) to restore their immunosuppressive function and prevent disease development. However, the underlying mechanisms of MSCs in regulating DCs still need to be better defined. Simultaneously, the delivery system for MSCs also influences their function. Herein, MSCs are encapsulated in alginate hydrogel to improve cell survival and retention in situ, maximizing efficacy in vivo. The three-dimensional co-culture of encapsulated MSCs with DCs demonstrates that MSCs can inhibit the maturation of DCs and the secretion of pro-inflammatory cytokines. In the collagen-induced arthritis (CIA) mice model, alginate hydrogel encapsulated MSCs induce a significantly higher expression of CD39+CD73+ on MSCs. These enzymes hydrolyze ATP to adenosine and activate A2A/2B receptors on immature DCs, further promoting the phenotypic transformation of DCs to tolDCs and regulating naïve T cells to Tregs. Therefore, encapsulated MSCs obviously alleviate the inflammatory response and prevent CIA progression. This finding clarifies the mechanism of MSCs-DCs crosstalk in eliciting the immunosuppression effect and provides insights into hydrogel-promoted stem cell therapy for autoimmune diseases.

5.
Chem Asian J ; 18(11): e202300160, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37029633

RESUMO

New methods for preparation of chiral alkyl fluorides have been studied intensively in recent years due to the favorable physicochemical and biological properties of those structures. Herein, we describe the regio- and enantioselective allylic alkylation of α-pyridyl-α-fluoroesters with allyl acetates promoted by Cu/Pd synergistic catalysis, constructing the carbon- fluorine quaternary stereocenters. In this co-catalytic system, palladium catalyst mainly constructed the C-C bond, while chiral copper catalyst controlled the enantioselectivity. A series of aryl- and aliphatic-substituted allyl acetates are applied, giving the corresponding products in high yield, excellent enantioselectivity, and E/Z (up to 98% yield, 98 : 2 er, E/Z>20 : 1).

6.
Sci Adv ; 9(4): eadd8977, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36706185

RESUMO

Cervical squamous cell carcinoma (CESC) is a prototypical human cancer with well-characterized pathological stages of initiation and progression. However, high-resolution knowledge of the transcriptional programs underlying each stage of CESC is lacking, and important questions remain. We performed single-cell RNA sequencing of 76,911 individual cells from 13 samples of human cervical tissues at various stages of malignancy, illuminating the transcriptional tumorigenic trajectory of cervical epithelial cells and revealing key factors involved in CESC initiation and progression. In addition, we found significant correlations between the abundance of specific myeloid, lymphoid, and endothelial cell populations and the progression of CESC, which were also associated with patients' prognosis. Last, we demonstrated the tumor-promoting function of matrix cancer-associated fibroblasts via the NRG1-ERBB3 pathway in CESC. This study provides a valuable resource and deeper insights into CESC initiation and progression, which is helpful in refining CESC diagnosis and for the design of optimal treatment strategies.


Assuntos
Carcinoma de Células Escamosas , Neoplasias do Colo do Útero , Feminino , Humanos , Carcinoma de Células Escamosas/genética , Cognição , Células Endoteliais , Células Epiteliais , Neoplasias do Colo do Útero/genética
7.
Adv Sci (Weinh) ; : e2204463, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414403

RESUMO

Major depressive disorder (MDD) is a leading cause of disability worldwide. A comprehensive understanding of the molecular mechanisms of this disorder is critical for the therapy of MDD. In this study, it is observed that deubiquitinase Mysm1 is induced in the brain tissues from patients with major depression and from mice with depressive behaviors. The genetic silencing of astrocytic Mysm1 induced an antidepressant-like effect and alleviated the osteoporosis of depressive mice. Furthermore, it is found that Mysm1 knockdown led to increased ATP production and the activation of p53 and AMP-activated protein kinase (AMPK). Pifithrin α (PFT α) and Compound C, antagonists of p53 and AMPK, respectively, repressed ATP production and reversed the antidepressant effect of Mysm1 knockdown. Moreover, the pharmacological inhibition of astrocytic Mysm1 by aspirin relieved depressive-like behaviors in mice. The study reveals, for the first time, the important function of Mysm1 in the brain, highlighting astrocytic Mysm1 as a potential risk factor for depression and as a valuable target for drug discovery to treat depression.

8.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232998

RESUMO

Liver fibrosis is a wound-healing response caused by the abnormal accumulation of extracellular matrix, which is produced by activated hepatic stellate cells (HSCs). Most studies have focused on the activated HSCs themselves in liver fibrosis, and whether hepatocytes can modulate the process of fibrosis is still unclear. Sma mothers against decapentaplegic homologue 4 (Smad4) is a key intracellular transcription mediator of transforming growth factor-ß (TGF-ß) during the development and progression of liver fibrosis. However, the role of hepatocyte Smad4 in the development of fibrosis is poorly elucidated. Here, to explore the functional role of hepatocyte Smad4 and the molecular mechanism in liver fibrosis, a CCl4-induced liver fibrosis model was established in mice with hepatocyte-specific Smad4 deletion (Smad4Δhep). We found that hepatocyte-specific Smad4 deficiency reduced liver inflammation and fibrosis, alleviated epithelial-mesenchymal transition, and inhibited hepatocyte proliferation and migration. Molecularly, Smad4 deletion in hepatocytes suppressed the expression of inhibitor of differentiation 1 (ID1) and the secretion of connective tissue growth factor (CTGF) of hepatocytes, which subsequently activated the p38 and p65 signaling pathways of HSCs in an epidermal growth factor receptor-dependent manner. Taken together, our results clearly demonstrate that the Smad4 expression in hepatocytes plays an important role in promoting liver fibrosis and could therefore be a promising target for future anti-fibrotic therapy.


Assuntos
Hepatócitos , Cirrose Hepática , Proteína Smad4 , Animais , Fator de Crescimento do Tecido Conjuntivo/genética , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Receptores ErbB/metabolismo , Células Estreladas do Fígado/metabolismo , Hepatócitos/metabolismo , Fígado/metabolismo , Cirrose Hepática/metabolismo , Camundongos , Proteína Smad4/metabolismo , Fator de Crescimento Transformador beta/metabolismo
9.
Stem Cell Res Ther ; 13(1): 341, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35883153

RESUMO

BACKGROUND: Traumatic brain injury (TBI) leads to cell and tissue impairment, as well as functional deficits. Stem cells promote structural and functional recovery and thus are considered as a promising therapy for various nerve injuries. Here, we aimed to investigate the role of ectoderm-derived frontal bone mesenchymal stem cells (FbMSCs) in promoting cerebral repair and functional recovery in a murine TBI model. METHODS: A murine TBI model was established by injuring C57BL/6 N mice with moderate-controlled cortical impact to evaluate the extent of brain damage and behavioral deficits. Ectoderm-derived FbMSCs were isolated from the frontal bone and their characteristics were assessed using multiple differentiation assays, flow cytometry and microarray analysis. Brain repairment and functional recovery were analyzed at different days post-injury with or without FbMSC application. Behavioral tests were performed to assess learning and memory improvements. RNA sequencing analysis, immunofluorescence staining, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to examine inflammation reaction and neural regeneration. In vitro co-culture analysis and quantification of glutamate transportation were carried out to explore the possible mechanism of neurogenesis and functional recovery promoted by FbMSCs. RESULTS: Ectoderm-derived FbMSCs showed fibroblast like morphology and osteogenic differentiation capacity. FbMSCs were CD105, CD29 positive and CD45, CD31 negative. Different from mesoderm-derived MSCs, FbMSCs expressed the ectoderm-specific transcription factor Tfap2ß. TBI mice showed impaired learning and memory deficits. Microglia and astrocyte activation, as well as neural damage, were significantly increased post-injury. FbMSC application ameliorated the behavioral deficits of TBI mice and promoted neural regeneration. RNA sequencing analysis showed that signal pathways related to inflammation decreased, whereas those related to neural activation increased. Immunofluorescence staining and qRT-PCR data revealed that microglial activation and astrocyte polarization to the A1 phenotype were suppressed by FbMSC application. In addition, FGF1 secreted from FbMSCs enhanced glutamate transportation by astrocytes and alleviated the cytotoxic effect of excessive glutamate on neurons. CONCLUSIONS: Ectoderm-derived FbMSC application significantly alleviated neuroinflammation, brain injury, and excitatory toxicity to neurons, improved cognition and behavioral deficits in TBI mice. Therefore, ectoderm-derived FbMSCs could be ideal therapeutic candidates for TBI which mostly affect cells from the same embryonic origins as FbMSCs.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Células-Tronco Mesenquimais , Animais , Lesões Encefálicas/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Ectoderma/metabolismo , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacologia , Fator 1 de Crescimento de Fibroblastos/uso terapêutico , Osso Frontal/metabolismo , Ácido Glutâmico/metabolismo , Ácido Glutâmico/farmacologia , Ácido Glutâmico/uso terapêutico , Inflamação/metabolismo , Inflamação/terapia , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , Osteogênese
10.
J Environ Manage ; 314: 115075, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35436705

RESUMO

Catalytic reduction of nitroaromatic compounds using low-cost non-precious metal containing catalyst remains an essential topic in wastewater treatment. Herein, copper hexacyanoferrate nanospheres decorated copper foams (CF) were prepared by a facile method, and it was used as structured catalysts for the reduction of p-nitrophenol (p-NP) and azo dyes. The catalyst obtained by calcination at 200 °C shows the highest catalytic activity, with an almost complete reduction of p-NP within 3 min with a rate of 2.057 min-1 at room temperature, and it exhibited excellent reusability in successive 6 cycles. The effects of temperature, initial concentration, pH, and flow rate on p-NP reduction were investigated. Moreover, the mechanistic investigation revealed that fast electron transfer ability and enhanced adsorption for p-NP contributed to its enhanced catalytic performances. This work put forward an efficient approach for the construction of structured catalysts with enhanced performance in catalytic reduction applications.


Assuntos
Compostos Azo , Nanosferas , Compostos Azo/química , Cobre/química , Ferrocianetos , Nitrofenóis
11.
Bioorg Chem ; 121: 105679, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35182884

RESUMO

A phytochemical study was carried out on the extract of Trillium tschonoskii rhizomes, resulting in the isolation of thirty-six steroidal glycosides (1-36). Their structures were established mainly by spectroscopic analyses as well as necessary chemical evidence, of which 1-25 were identified as new analogues. Herein, all the isolated analogues were screened for the cytotoxicity against intrahepatic cholangiocarcinoma (ICC) cell lines of HuCCT1 and RBE through tumor colony formation and CCK-8 survival analysis, and the results demonstrated that three compounds 9, 12, and 26 significantly repressed tumor colony and sphere formation in both cell lines, respectively. Furthermore, the three analogues possessed a remarkable inhibitory role of organoid formation established from hydrodynamic induced mouse primary intrahepatic cholangiocarcinoma. Moreover, the functional assays of flow cytometry analysis, cancer stemness related gene expression, and western blotting assays all indicated that compound 26 could significantly repress cancer stem markers. Taken together, these results demonstrate that steroidal glycosides derived from T. tschonoskii rhizomes could be potentially implicated in human ICC therapy.


Assuntos
Colangiocarcinoma , Saponinas , Trillium , Animais , Proliferação de Células , Colangiocarcinoma/tratamento farmacológico , Glicosídeos/farmacologia , Camundongos , Rizoma/química , Saponinas/química , Saponinas/farmacologia , Trillium/química
12.
Cancer Metab ; 10(1): 2, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35057851

RESUMO

BACKGROUND: Altered lipid metabolism is closely related to the occurrence and development of hepatocellular carcinoma (HCC). Carnitine palmitoyltransferase 1C (CPT1C) is a member of CPT1 family and plays a key role in cancer development and progression. However, how microRNAs (miRNAs) regulate CPT1C-mediated fatty acid transport and oxidation remains to be elucidated. METHODS: Oil Red O staining, mitochondrial, and lipid droplets immunofluorescence staining were used to detect the functions of miR-377-3p and CPT1C in fatty acid oxidation. Colocalization of palmitate and mitochondria was performed to investigate the function of miR-377-3p and CPT1C in fatty acid transport into mitochondria. Fatty acid oxidation (FAO) assay was used to detect the function of miR-377-3p and CPT1C in FAO. Cell proliferation, migration and invasion assays and animal experiments were used to evaluate the role of miR-377-3p/CPT1C axis in HCC progression in vitro and in vivo. Immunofluorescence staining was used to identify the clinical significance of miR-377-3p and CPT1C in HCC patients. RESULTS: MiR-377-3p inhibits CPT1C expression by targeting its 3'-untranslated region. Through repression of CPT1C, miR-377-3p suppresses fatty acid oxidation by preventing fatty acid from entering into mitochondria and decreasing ATP production in HCC cells. Inhibiting fatty acid oxidation abolishes the ability of miR-377-3p/CPT1C axis to regulate HCC proliferation, migration, invasion and metastasis in vitro and in vivo. In HCC patients, CPT1C is significantly upregulated, and miR-377-3p expression and lipid droplets are negatively correlated with CPT1C expression. High expression of miR-377-3p and CPT1C predict better and worse clinical outcomes, respectively. CONCLUSIONS: We uncover the key function and the relevant mechanisms of the miR-377-3p/CPT1C axis in HCC, which might provide a potential target for the treatment of HCC.

13.
Front Biosci (Landmark Ed) ; 27(1): 18, 2022 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-35090323

RESUMO

AIMS: Intrahepatic cholangiocarcinoma (ICC) is a highly malignant and heterogeneous cancer with a poor prognosis. At present, there is no optimal treatment except for surgical resection, and recurrence after resection will lead to death due to multidrug resistance. Changes in the redox signal have been found to be closely related to the growth and drug resistance of tumor cells. Therefore, the purpose of this study was to screen small molecule compounds from the redox library to find a drug for anti-ICC and to explore its downstream mechanism. MATERIAL AND METHODS: Tumor clone and sphere formation of ICC cell lines, as well as mouse ICC organoid proliferation assays were utilized to screen the candidate drug in the Redox library. Western blotting, quantitative reverse-transcription polymerase chain reaction (qRT-PCR), as well as cell apoptosis and cell cycle flow cytometry assays were used to explore the mechanism. RESULTS: We found that Hinokitiol was a candidate drug through inhibition of tumor clone and sphere formation, and the expression of cancer stem cell (CSC)-related genes. Furthermore, Hinokitiol significantly inhibited the proliferation of ICC cells by downregulating the ERK and P38 pathways. In addition, the combination of Hinokitiol and Palbociclib showed a significant inhibitory effect on human ICC cells and mouse ICC organoids. CONCLUSION: Hinokitiol may have the potential to be developed as a clinical therapeutic drug for ICC treatment.


Assuntos
Antineoplásicos , Neoplasias dos Ductos Biliares , Colangiocarcinoma , Animais , Antineoplásicos/uso terapêutico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Camundongos , Monoterpenos , Oxirredução , Tropolona/análogos & derivados
14.
J Hazard Mater ; 421: 126726, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34330079

RESUMO

Carbon-based catalysts with heteroatom doping and hollow structures are desired for advanced oxidation processes (AOPs). Herein, dual-shelled Co, N, and S codoped hollow carbon nanocages were developed by wrapping zeolitic imidazolate framework-67 (ZIF-67) with trithiocyanuric acid (TCA) and performing subsequent carbonization. The optimal composite catalyst (Co-NC-CoS) exhibited excellent catalytic performance toward different organic pollutants. Almost complete removal of 4-NP (60 mg/L-1) was achieved within 20 min by 10 mg of catalyst and 0.2 g/L-1 peroxymonosulfate (PMS). Moreover, the catalyst showed good stability and reusability. The effects of catalyst and PMS dose, pollutant concentration, pH and common anions were investigated, and reactive oxygen species (ROS) were studied by scavenger experiments and electron paramagnetic resonance (EPR) tests. The results show that multidoped atoms S, Co and N all contributed to the degradation system. Several lines of evidence suggested that S could change the catalytic process from Co3+/Co2+ to Co3+/Co2+/Co0 reduction due to its low redox potential. Degradation was achieved through both radical and nonradical pathways, where sulfate radicals (SO4·Ì¶), hydroxyl radicals (·OH) and singlet oxygen (1O2) were primary reactive species. Overall, this work may suggest that the novel multi heteroatom-doped catalysts with complex structures can be developed for environmental remediation.

15.
J Colloid Interface Sci ; 591: 184-192, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33601103

RESUMO

Rational design of metal-free carbon-based heterogeneous catatlyst for wastewater remediation via peroxymonosulfate (PMS) activation is highly desirable. Here, hollow structured porous carbon with abundant N, a high graphitization degree, and a large specific surface area and pore volume (1301 m2/g and 1.12 cm3/g) was synthesized by the pyrolysis of core-shell structured composites consisting of polystyrene (PS) cores and Zeolitic imidazolate frameworks-8 (ZIF-8) shells. The hollow structured carbon (CPS@ZIF-8) was characterized thoroughly and applied for phenol degradation by the activation of PMS. The effects of operation conditions such as the catalyst and PMS dose, phenol concentration, initial pH, and temperature on phenol removal were investigated comprehensively. Moreover, the main reactive species involved in phenol oxidation were investigated, and a plausible mechanism for the degradation of phenol is proposed. The results show that CPS@ZIF-8 exhibited an excellent phenol adsorption and degradation performance, which can be mainly ascribed to its large surface area, abundance of nitrogen and hollow porous structure. Moreover, both the nonradical pathway (involving 1O2) and the radical pathway (involving SO4- and O2-) were found to be involved in the decomposition of phenol.

16.
Cancer Metastasis Rev ; 40(1): 245-272, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33423164

RESUMO

Pancreatic cancer (PC) is assumed to be an intimidating and deadly malignancy due to being the leading cause of cancer-led mortality, predominantly affecting males of older age. The overall (5 years) survival rate of PC is less than 9% and is anticipated to be aggravated in the future due to the lack of molecular acquaintance and diagnostic tools for its early detection. Multiple factors are involved in the course of PC development, including genetics, cigarette smoking, alcohol, family history, and aberrant epigenetic signatures of the epigenome. In this review, we will mainly focus on the genetic mutations and epigenetic signature of PC. Multiple tumor suppressor and oncogene mutations are involved in PC initiation, including K-RAS, p53, CDKN2A, and SMAD4. The mutational frequency of these genes ranges from 50 to 98% in PC. The nature of mutation diagnosis is mostly homozygous deletion, point mutation, and aberrant methylation. In addition to genetic modification, epigenetic alterations particularly aberrant hypermethylation and hypomethylation also predispose patients to PC. Hypermethylation is mostly involved in the downregulation of tumor suppressor genes and leads to PC, while multiple genes also represent a hypomethylation status in PC. Several renewable drugs and detection tools have been developed to cope with this aggressive malady, but all are futile, and surgical resection remains the only choice for prolonged survival if diagnosed before metastasis. However, the available therapeutic development is insufficient to cure PC. Therefore, novel approaches are a prerequisite to elucidating the genetic and epigenetic mechanisms underlying PC progression for healthier lifelong survival.


Assuntos
Epigênese Genética , Mutação , Neoplasias Pancreáticas , Homozigoto , Humanos , Neoplasias Pancreáticas/genética , Deleção de Sequência
17.
J Hepatol ; 73(5): 1118-1130, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32505533

RESUMO

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (ICC) is the second most common liver malignancy. ICC typically features remarkable cellular heterogeneity and a dense stromal reaction. Therefore, a comprehensive understanding of cellular diversity and the interplay between malignant cells and niche cells is essential to elucidate the mechanisms driving ICC progression and to develop therapeutic approaches. METHODS: Herein, we performed single-cell RNA sequencing (scRNA-seq) analysis on unselected viable cells from 8 human ICCs and adjacent samples to elucidate the comprehensive transcriptomic landscape and intercellular communication network. Additionally, we applied a negative selection strategy to enrich fibroblast populations in 2 other ICC samples to investigate fibroblast diversity. The results of the analyses were validated using multiplex immunofluorescence staining, bulk transcriptomic datasets, and functional in vitro and in vivo experiments. RESULTS: We sequenced a total of 56,871 single cells derived from human ICC and adjacent tissues and identified diverse tumor, immune, and stromal cells. Malignant cells displayed a high degree of inter-tumor heterogeneity. Moreover, tumor-infiltrating CD4 regulatory T cells exhibited highly immunosuppressive characteristics. We identified 6 distinct fibroblast subsets, of which the majority were CD146-positive vascular cancer-associated fibroblasts (vCAFs), with highly expressed microvasculature signatures and high levels of interleukin (IL)-6. Functional assays indicated that IL-6 secreted by vCAFs induced significant epigenetic alterations in ICC cells, particularly upregulating enhancer of zeste homolog 2 (EZH2) and thereby enhancing malignancy. Furthermore, ICC cell-derived exosomal miR-9-5p elicited high expression of IL-6 in vCAFs to promote tumor progression. CONCLUSIONS: Our single-cell transcriptomic dataset delineates the inter-tumor heterogeneity of human ICCs, underlining the importance of intercellular crosstalk between ICC cells and vCAFs, and revealing potential therapeutic targets. LAY SUMMARY: Intrahepatic cholangiocarcinoma is an aggressive and chemoresistant malignancy. Better understanding the complex transcriptional architecture and intercellular crosstalk of these tumors will help in the development of more effective therapies. Herein, we have identified important interactions between cancer cells and cancer-associated fibroblasts in the tumor stroma, which could have therapeutic implications.


Assuntos
Fibroblastos Associados a Câncer , Colangiocarcinoma , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Interleucina-6/metabolismo , Neoplasias Hepáticas , MicroRNAs/metabolismo , Antígeno CD146/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/patologia , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Comunicação Celular , Colangiocarcinoma/imunologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Técnicas de Cocultura/métodos , Progressão da Doença , Humanos , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neovascularização Patológica/genética , Análise de Sequência de RNA , Transdução de Sinais , Análise de Célula Única , Células Estromais/metabolismo , Células Estromais/patologia , Microambiente Tumoral , Regulação para Cima
18.
Am J Cancer Res ; 10(4): 1115-1129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368389

RESUMO

Pancreatic cancer (PC) is recognized as the most aggressive and deadliest malignancy because it has the highest mortality of all cancers in humans. Mutations in multiple tumor suppressors and oncogenes have been documented to be involved in pancreatic cancer progression and metastasis. The upregulation of tetraspanin 1 (TSPAN1), a transmembrane protein, has been reportedly observed in many human cancers. However, the role of TSPAN1 and its underlying molecular mechanisms in PC progression have not been fully elucidated. In this study, we validated the oncogenic role of TSPAN1 in PC, showing that TSPAN1 reinforces cell proliferation, migration, invasion and tumorigenesis. To investigate the upregulation of TSPAN1 in PC, we showed that miR-216a is the upstream negative regulator of TSPAN1 via direct binding to the TSPAN1 3'-untranslated region. Through RNA-Seq analysis, we for the first time revealed that TSPAN1 expression transcriptionally regulates ITGA2, which is involved in the actin cytoskeleton pathway. The stimulated cell proliferation and invasion initiated by TSPAN1 overexpression could be abolished by knockdown of ITGA2 in PC cells. Furthermore, TSPAN1 epigenetically regulates the expression of ITGA2 by modulating the levels of TET2 DNMT3B and DNMT1, resulting in hypomethylation of the CpG island of the ITGA2 promoter. In conclusion, the newly identified miR-216a/TSPAN1/ITGA2 axis is involved in the modulation of PC progression and represents a novel therapeutic strategy for future pancreatic cancer treatment.

19.
Dalton Trans ; 49(11): 3480-3487, 2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32103217

RESUMO

Four trinuclear ruthenium carbonyl clusters, (6-BrPyCHRO)2Ru3(CO)8 (R = 4-OCH3C6H4, 1a; R = 4-BrC6H4, 1b) and (2-OC6H4-HC[double bond, length as m-dash]N-C6H4R)2Ru3(CO)8 (R = 4-OCH3, 2a; R = 4-Br, 2b), were synthesized from the reactions of Ru3(CO)12 with the corresponding N,O-bidentate ligands (two pyridyl alcohols and two Schiff bases) respectively in a ratio of 1 : 2. Three new complexes 1b, 2a and 2b have been fully characterized by elemental analysis, FT-IR, NMR and X-ray crystallography. The catalytic activity of these ruthenium complexes for the aerobic oxidation of primary benzylic amines to amides and nitriles in the presence of t-BuOK was investigated, of which the Schiff base complex 2a was found to exhibit the highest activity.

20.
J Environ Manage ; 262: 110299, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32094105

RESUMO

Cobalt-based Zeolitic imidazolate frameworks (ZIFs) have shown a great potential for radical production by activating peroxymonosulfate (PMS). However, improve the stability of ZIFs in the reaction remains a significant challenge. In this work, ZIF-67 was synthesized and protected by coating with a layer of silica, furthermore, the yolk-shell ZIFs@SiO2 was carbonized under inner gas to obtain the Co containing carbon. When the above samples were applied for catalytic degradation of Rhodamine B (RhB) in the presence of PMS, both of them shows similar performance, with higher RhB removal efficiency and stability than that of pure ZIF-67. Additionally, factors affecting the PMS activation such as catalyst and PMS dosage and solution pH were also investigated. Radical quenching tests and electron paramagnetic resonance (EPR) revealed that 1O2 was the dominant active species involving in the degradation process. Finally, the reusability of the catalysts was studied and the spent catalysts were analyzed. Overall, the results provide insights into synthesis of yolk-shell ZIFs@SiO2 catalyst with enhanced performance for the degradation of organic pollutants from effluent.


Assuntos
Zeolitas , Carbono , Peróxidos , Dióxido de Silício
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...