Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
1.
Phytopathology ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38723196

RESUMO

Stripe rust and powdery mildew are serious diseases that severely decrease the yield of wheat. Planting wheat cultivars with powdery mildew and stripe rust resistance genes is the most effective way to control these two diseases. Introducing disease-resistance genes from related species into the wheat genome via chromosome translocation is an important way to improve wheat disease resistance. In this study, nine novel T1RS.1AL translocation lines were developed from the cross of wheat cultivar Chuannong25 (CN25) and a Chinese rye Qinling. The results of non-denaturing fluorescence in situ hybridization (ND-FISH) and PCR showed that all new lines were homozygous for the T1RS.1AL translocation. These new T1RS.1AL translocation lines exhibited strong resistance to stripe rust and powdery mildew. The cytogenetics results indicated that the resistance of the new lines was conferred by the 1RS chromosome arms, which came from Qinling rye. The genetic analysis indicated that there were new dominant resistance genes on the 1RS chromosome arm resistant to stripe rust and powdery mildew, and their resistance patterns were different from Yr9, Pm8, and Pm17 genes. In addition, the T1RS.1AL translocation lines generally exhibited better agronomic traits in the field relative to CN25. These T1RS.1AL translocations have great potential in wheat-breeding programs in the future.

2.
Inorg Chem ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38772015

RESUMO

Flexible metal-organic frameworks (FMOFs) exhibit reversible structural transitions ("breathing" behaviors), which can regulate the proton transport passageway effectively. This property offers remarkable advantages for improving the proton conductivity. Our objective of this work is to design a single-variable flexibility synergistic strategy for the fabrication of FMOFs with high conductivity. Herein, four two-dimensional FMOFs, {[Co(4-bpdb)(R-ip)]·xsolvents}n (x = rich, 1-4), have been successfully designed and assembled (4-bpdb = 1,4-bis(4-pyridyl)-2,3-diaza-1,3-butadiene and R-ip = MeO/EtO/n-PrO/n-BuO-isophthalate). Upon the release and/or absorption of different solvent molecules, they display reversible breathing behaviors, thereby resulting in the formation of the partial and complete solvent-free compounds {[Co(4-bpdb)(R-ip)]·ysolvents}n (y = free or poor, 1A-4A). This breathing behavior involves the synergistic self-adaption of the dynamic torsion of alkoxy groups and reversible structural transformation, leading to remarkable changes in cell parameters and void space, as evidenced by single-crystal X-ray diffraction, powder X-ray diffraction, and N2 and CO2 adsorption analyses. At 363 K and 98% relative humidity, 2A exhibits the best proton conductivity among the FMOFs. Its conductivity reaches 4.08 × 10-2 S cm-1 and is one of the highest conductivities shown by reported unmodified MOF-based proton conductors.

3.
Small ; : e2401308, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773889

RESUMO

Incorporating ultralow loading of nanoparticles into polymers has realized increases in dielectric constant and breakdown strength for excellent energy storage. However, there are still a series of tough issues to be dealt with, such as organic solvent uses, which face enormous challenges in scalable preparation. Here, a new strategy of dual in situ synthesis is proposed, namely polymerization of polyethylene terephthalate (PET) synchronizes with growth of calcium borate nanoparticles, making polyester nanocomposites from monomers directly. Importantly, this route is free of organic solvents and surface modification of nanoparticles, which is readily accessible to scalable synthesis of polyester nanocomposites. Meanwhile, uniform dispersion of as ultralow as 0.1 wt% nanoparticles and intense bonding at interfaces have been observed. Furthermore, the PET-based nanocomposite displays obvious increases in both dielectric constant and breakdown strength as compared to the neat PET. Its maximum discharged energy density reaches 15 J cm-3 at 690 MV m-1 and power density attains 218 MW cm-3 under 150 Ω resistance at 300 MV m-1, which is far superior to the current dielectric polymers that can be produced at large scales. This work presents a scalable, safe, low-cost, and environment-friendly route toward polymer nanocomposites with superior capacitive performance.

4.
Adv Sci (Weinh) ; : e2307981, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38713722

RESUMO

Gut microbiota can influence host gene expression and physiology through metabolites. Besides, the presence or absence of gut microbiome can reprogram host transcriptome and epitranscriptome as represented by N6-methyladenosine (m6A), the most abundant mammalian mRNA modification. However, which and how gut microbiota-derived metabolites reprogram host transcriptome and m6A epitranscriptome remain poorly understood. Here, investigation is conducted into how gut microbiota-derived metabolites impact host transcriptome and m6A epitranscriptome using multiple mouse models and multi-omics approaches. Various antibiotics-induced dysbiotic mice are established, followed by fecal microbiota transplantation (FMT) into germ-free mice, and the results show that bile acid metabolism is significantly altered along with the abundance change in bile acid-producing microbiota. Unbalanced gut microbiota and bile acids drastically change the host transcriptome and the m6A epitranscriptome in multiple tissues. Mechanistically, the expression of m6A writer proteins is regulated in animals treated with antibiotics and in cultured cells treated with bile acids, indicating a direct link between bile acid metabolism and m6A biology. Collectively, these results demonstrate that antibiotic-induced gut dysbiosis regulates the landscape of host transcriptome and m6A epitranscriptome via bile acid metabolism pathway. This work provides novel insights into the interplay between microbial metabolites and host gene expression.

5.
Artigo em Inglês | MEDLINE | ID: mdl-38760189

RESUMO

BACKGROUND AND AIMS: Since the global burden of chronic kidney disease (CKD) is rising rapidly, the study aimed to assess the association of cardiovascular health (CVH) metrics with all-cause and cardiovascular disease (CVD) mortality among individuals with CKD. METHODS AND RESULTS: The cohort study included 5834 participants with CKD from the National Health and Nutrition Examination Survey 1999-2018. A composite CVH score was calculated based on smoking status, physical activity, body mass index, blood pressure, total cholesterol, diet quality, and glucose control. Primary outcomes were all-cause and CVD mortality as of December 31, 2019. Multivariable-adjusted Cox proportional hazards models were used to estimate the association between CVH metrics and deaths in CKD patients. During a median follow-up of 7.2 years, 2178 all-cause deaths and 779 CVD deaths were documented. Compared to participants with ideal CVH, individuals with intermediate CVH exhibited a 46.0% increase in all-cause mortality (hazard ratio, 1.46; 95% confidence interval: 1.17, 1.83), while those with poor CVH demonstrated a 101.0% increase (2.01; 1.54, 2.62). For CVD mortality, individuals with intermediate CVH experienced a 56.0% increase (1.56; 1.02, 2.39), and those with poor CVH demonstrated a 143.0% increase (2.43; 1.51, 3.91). Linear trends were noted for the associations of CVH with both all-cause mortality (P for trend <0.001) and CVD mortality (P for trend = 0.02). CONCLUSIONS: Lower CVH levels were associated with higher all-cause and CVD mortality in individuals with CKD, which highlights the importance of maintaining good CVH in CKD patients.

6.
Artigo em Inglês | MEDLINE | ID: mdl-38755082

RESUMO

BACKGROUND AND AIMS: Our study examined the trends of cardiovascular health metrics in individuals with coronary heart disease (CHD) and their associations with all-cause and cardiovascular disease mortality in the US. METHODS AND RESULTS: The cohort study was conducted based on the National Health and Nutrition Examination Survey 1999-2018 and their linked mortality files (through 2019). Baseline CHD was defined as a composite of self-reported doctor-diagnosed coronary heart disease, myocardial infarction, and angina pectoris. Cardiovascular health metrics were assessed according to the American Heart Association recommendations. Long-term all-cause and cardiovascular disease mortality were the primary outcomes. Survey-adjusted Cox regression models were used to estimate hazard ratios and corresponding 95% confidence intervals for the associations between cardiovascular health metrics and all-cause and cardiovascular disease mortality. The prevalence of one or fewer ideal cardiovascular health metrics increased from 14.15% to 22.79% (P < 0.001) in CHD, while the prevalence of more than four ideal cardiovascular health metrics decreased from 21.65% to 15.70 % (P < 0.001) from 1999 to 2018, respectively. Compared with CHD participants with one or fewer ideal cardiovascular health metrics, those with four or more ideal cardiovascular health metrics had a 35% lower risk (hazard ratio, 0.65; 95% confidence interval: 0.51, 0.82) and a 44% lower risk (0.56; 0.38, 0.84) in all-cause and cardiovascular disease mortality, respectively. CONCLUSION: Substantial declines were noted in ideal cardiovascular health metrics in US adults with CHD. A higher number of cardiovascular health metrics was associated with lower all-cause and cardiovascular disease mortality in them.

7.
Nat Prod Res ; : 1-6, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38752877

RESUMO

Purpose: To investigate the antibacterial activity of pimaradienoic acid, a natural product isolated from Eleutherococcus trifoliatus. Methods: Pimaradienoic acid was purified from E. trifoliatus and tested against three Gram-positive bacteria. Minimum inhibitory concentrations (MICs) were determined, and bacterial growth curves were measured. Scanning electron microscopy (SEM) was used to observe morphological changes in bacteria after drug treatment. Results: Pimaradienoic acid exhibited concentration-dependent inhibition of the growth of the three bacteria tested. The MIC and bacterial growth dynamics results indicated that pimaradienoic acid had potent antibacterial activity. SEM revealed that pimaradienoic acid disrupted the bacterial membrane, leading to cell death. Conclusions: Pimaradienoic acid has significant antibacterial activity against Gram-positive bacteria, suggesting its potential as a novel antimicrobial agent.

8.
Adv Med Sci ; 69(2): 217-223, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631609

RESUMO

PURPOSE: Smooth muscle cell (SMC) dysregulation is part of the pathological basis of pulmonary artery hypertension (PAH). We aimed to explore the heterogeneity of SMCs in PAH. METHODS: The profile GSE210248 was obtained from NCBI Gene Expression Omnibus, containing the scRNA-seq data of pulmonary arteries (PA) from three patients with PAH and three healthy donors. After quality control, normalization, and dimension reduction, cell clustering analysis was performed. Differential expression analysis and functional enrichment analysis were carried out successively in smooth muscle cells (SMCs). The enrichment scores of cell cycle and cell migration gene sets in SMCs were calculated. Then, the Spearman correlation coefficients between antisense non-coding RNA in the INK4 locus (ANRIL) expression and two gene sets were computed. RESULTS: Eight cell clusters were identified in PA from samples. The proportion of SMCs was increased in PAH samples. SMCs were divided into five subclusters with diverse biological functions. Muscle contraction-related SMC1 was decreased, while extracellular matrix organization-related SMC2, immune and inflammatory response-related SMC4 and SMC5 were increased in PAH samples compared with healthy donors. The enrichment scores of cell cycle and cell migration gene sets in SMCs were higher in PAH samples than in donors. ANRIL was down-regulated significantly in PAH samples and was negatively related to the scores of two gene sets. CONCLUSION: SMCs exhibited significant heterogeneity in PAH. The altered abilities of SMC proliferation and migration in PAH were associated with ANRIL expression.

9.
Cardiovasc Diabetol ; 23(1): 116, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566123

RESUMO

BACKGROUND: Diabetic cardiomyopathy (DCM) is a serious complication in patients with type 1 diabetes mellitus (T1DM), which still lacks adequate therapy. Irisin, a cleavage peptide off fibronectin type III domain-containing 5, has been shown to preserve cardiac function in cardiac ischemia-reperfusion injury. Whether or not irisin plays a cardioprotective role in DCM is not known. METHODS AND RESULTS: T1DM was induced by multiple low-dose intraperitoneal injections of streptozotocin (STZ). Our current study showed that irisin expression/level was lower in the heart and serum of mice with STZ-induced TIDM. Irisin supplementation by intraperitoneal injection improved the impaired cardiac function in mice with DCM, which was ascribed to the inhibition of ferroptosis, because the increased ferroptosis, associated with increased cardiac malondialdehyde (MDA), decreased reduced glutathione (GSH) and protein expressions of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4), was ameliorated by irisin. In the presence of erastin, a ferroptosis inducer, the irisin-mediated protective effects were blocked. Mechanistically, irisin treatment increased Sirtuin 1 (SIRT1) and decreased p53 K382 acetylation, which decreased p53 protein expression by increasing its degradation, consequently upregulated SLC7A11 and GPX4 expressions. Thus, irisin-mediated reduction in p53 decreases ferroptosis and protects cardiomyocytes against injury due to high glucose. CONCLUSION: This study demonstrated that irisin could improve cardiac function by suppressing ferroptosis in T1DM via the SIRT1-p53-SLC7A11/GPX4 pathway. Irisin may be a therapeutic approach in the management of T1DM-induced cardiomyopathy.


Assuntos
Diabetes Mellitus Tipo 1 , Cardiomiopatias Diabéticas , Ferroptose , Humanos , Animais , Camundongos , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/etiologia , Cardiomiopatias Diabéticas/prevenção & controle , Sirtuína 1 , Fibronectinas , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Proteína Supressora de Tumor p53 , Miócitos Cardíacos
11.
Zygote ; 32(2): 130-138, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38248872

RESUMO

Spermatogenesis is a developmental process driven by interactions between germ cells and Sertoli cells. This process depends on appropriate gene expression, which might be regulated by transcription factors. This study focused on Rreb1, a zinc finger transcription factor, and explored its function and molecular mechanisms in spermatogenesis in a mouse model. Our results showed that RREB1 was predominantly expressed in the Sertoli cells of the testis. The decreased expression of RREB1 following injection of siRNA caused impaired Sertoli cell development, which was characterized using a defective blood-testis barrier structure and decreased expression of Sertoli cell functional maturity markers; its essential trigger might be SMAD3 destabilization. The decreased expression of RREB1 in mature Sertoli cells influenced the cell structure and function, which resulted in abnormal spermatogenesis, manifested as oligoasthenoteratozoospermia, and we believe RREB1 plays this role by regulating the transcription of Fshr and Wt1. RREB1 has been reported to activate Fshr transcription, and we demonstrated that the knockdown of Rreb1 caused a reduction in follicle-stimulating hormone receptor (FSHR) in the testis, which could be the cause of the increased sperm malformation. Furthermore, we confirmed that RREB1 directly activates Wt1 promoter activity, and RREB1 downregulation induced the decreased expression of Wt1 and its downstream polarity-associated genes Par6b and E-cadherin, which caused increased germ-cell death and reduced sperm number and motility. In conclusion, RREB1 is a key transcription factor essential for Sertoli cell development and function and is required for normal spermatogenesis.


Assuntos
Receptores do FSH , Células de Sertoli , Espermatogênese , Fatores de Transcrição , Animais , Masculino , Células de Sertoli/metabolismo , Espermatogênese/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Camundongos , Receptores do FSH/genética , Receptores do FSH/metabolismo , Proteínas WT1/genética , Proteínas WT1/metabolismo , Testículo/metabolismo , Testículo/citologia , Proteína Smad3/metabolismo , Proteína Smad3/genética , Barreira Hematotesticular/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Camundongos Endogâmicos C57BL
12.
BMC Infect Dis ; 24(1): 123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262970

RESUMO

BACKGROUND: Community-acquired respiratory infections are a leading cause of illness and death globally. The aetiologies of community-acquired pneumonia remain poorly defined. The RESPIRO study is an ongoing prospective observational cohort study aimed at developing pragmatic logistical and analytic platforms to accurately identify the causes of moderate-to-severe community-acquired pneumonia in adults and understand the factors influencing disease caused by individual pathogens. The study is currently underway in Singapore and has plans for expansion into the broader region. METHODS: RESPIRO is being conducted at three major tertiary hospitals in Singapore. Adults hospitalised with acute community-acquired pneumonia or lower respiratory tract infections, based on established clinical, laboratory and radiological criteria, will be recruited. Over the course of the illness, clinical data and biological samples will be collected longitudinally and stored in a biorepository for future analysis. DISCUSSION: The RESPIRO study is designed to be hypothesis generating, complementary to and easily integrated with other research projects and clinical trials. The detailed clinical database and biorepository will yield insights into the epidemiology and outcomes of community-acquired lower respiratory tract infections in Singapore and the surrounding region and offers the opportunity to deeply characterise the microbiology and immunopathology of community-acquired pneumonia.


Assuntos
Doenças Transmissíveis , Pneumonia , Infecções Respiratórias , Adulto , Humanos , Estudos Prospectivos , Avaliação de Resultados em Cuidados de Saúde , Estudos Observacionais como Assunto
13.
ACS Nano ; 18(4): 3752-3762, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38232329

RESUMO

The performance of aqueous zinc metal batteries is significantly compromised by the stability of the solid electrolyte interphase (SEI), which is intimately linked to the structure of the electrical double layer (EDL) between the zinc anode and electrolyte. Furthermore, understanding the mechanical behavior of SEI is crucial, as it governs its response to stress induced by volume changes, fracture, or deformation. In this study, we introduce l-glutamine (Gln) as an additive to regulate the adsorbed environment of the EDL and in situ produce a hybrid SEI consisting of ZnS and Gln-related species. The results of the nanoindentation test indicate that the hybrid SEI exhibits a low modulus and low hardness, alongside exceptional shape recovery capability, which effectively limits side reactions and enables topological adaptation to volume fluctuations in zinc anodes during zinc ion plating/stripping, thereby enabling Zn//Zn symmetric cells to exhibit an ultralong cycle life of 4000 h in coin cells and a high cumulative capacity of 18,000 mA h in pouch cells. More importantly, the superiority of the formulated strategy is further demonstrated in Zn//NH4V4O10 full cells at different N/P ratios of 5.2, 4.9, 3.5, and 2.4. This provides a promising approach for future interfacial modulation in aqueous battery chemistry.

14.
Int J Biol Macromol ; 259(Pt 2): 129265, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218292

RESUMO

The flame retardants and electromagnetic interference (EMI) shielding performance were enhanced by using imidazolium-functionalized polyurethane (IPU) modified multi-walled carbon nanotubes (CNTs) and ammonium polyphosphate (APP) for polylactic acid (PLA)/polycaprolactone (PCL) composites. The PLA/PCL/10APP/8CNT/1.6IPU composite containing 10 wt% APP and 8 wt% imidazolium modified CNTs reached the limiting oxygen index (LOI) value of 30.3 % and passed the V-0 rating in UL-94 tests. Moreover, the peak of the heat release rate (pHRR) and total heat release (THR) for this composite reached around 302 kW/m2 and 64 KJ/m2, which were decreased by 39.1 % and 15.8 % compared with that of PLA/PCL/10APP composite. The improved flame retardancy was attributed to the interplay of catalytic, barrier, and condensed char forming of imidazolium-modified CNTs and APP. IPU catalyzed the charring effect of the polymer matrix during combustion and regulated the migration of more CNTs to disperse at the two-phase interface. The dispersion of imidazolium-modified CNTs and co-continuous phase structure of the composites can establish continuous conductive pathways. The PLA/PCL/APP/CNT/IPU composite obtained a higher conductivity compared to the PLA/PCL/APP/CNT composite and whose EMI SE reached 33.9 dB, which is a promising candidate for next-generation sustainable and protective plastics.


Assuntos
Caproatos , Retardadores de Chama , Lactonas , Nanotubos de Carbono , Poliésteres , Catálise , Condutividade Elétrica , Polifosfatos
15.
Artigo em Inglês | MEDLINE | ID: mdl-38204258

RESUMO

OBJECTIVE: Several novel fluorinated chalcone derivatives were synthesized, and their in vitro anticervical cancer activity and mechanism of action were investigated using the parent nucleus of licorice chalcone as the lead compound backbone and MDM2-p53 as the target. METHODS: In this study, 16 novel chalcone derivatives (3a-3r) were designed and synthesized by molecular docking technology based on the licorice chalcone parent nucleus as the lead compound scaffold and the cancer apoptosis regulatory target MDM2-p53. The structures of these compounds were confirmed by 1H-NMR, 13C-NMR, and HR-ESI-MS. The inhibitory effects of the compounds on the proliferation of three human cervical cancer cell lines (SiHa, HeLa, and C-33A) and two normal cell lines (H8 and HaCaT) were determined by MTT assay, and the initialstructure-activity relationship was analyzed. Transwell and flow cytometry were used to evaluate the effects of target compounds on the inhibition of cancer cell migration and invasion, apoptosis induction, and cell cycle arrest. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot (WB) were used to detect the effects of candidate compounds on mRNA, p53, and Murine double minute 2 (MDM2) protein expression. The binding characteristics of the target compounds to the MDM2 protein target in the p53-MDM2 pathway were evaluated by molecular docking technology. RESULTS: The target compounds had considerable inhibitory activity on the proliferation of three cervical cancer cell lines. Among them, compound 3k (E)-3-(4-(dimethylamino)phenyl)-2-methyl-1-(3- (trifluoromethyl)phenyl)prop-2-en-1-one) showed the highest activity against HeLa cells (IC50=1.08 µmol/L), which was better than that of the lead compound Licochalcone B, and 3k showed lower toxicity to both normal cells. Compound 3k strongly inhibited the migration and invasion of HeLa cells and induced apoptosis and cell cycle arrest at the G0/G1 phase. Furthermore, compound 3k upregulated the expression of p53 and BAX and downregulated the expression of MDM2, MDMX, and BCL2. Moreover, molecular docking results showed that compound 3k could effectively bind to the MDM2 protein (binding energy: -9.0 kcal/mol). These results suggest that the compounds may activate the p53 signaling pathway by inhibiting MDM2 protein, which prevents cancer cell proliferation, migration, and invasion and induces apoptosis and cell cycle arrest in cancer cells. CONCLUSION: This study provides a new effective and low-toxicity drug candidate from licochalcone derivatives for treating cervical cancer.

16.
J Biol Chem ; 299(12): 105442, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37949222

RESUMO

Adenine base editors (ABEs) are genome-editing tools that have been harnessed to introduce precise A•T to G•C conversion. The discovery of split genes revealed that all introns contain two highly conserved dinucleotides, canonical "AG" (acceptor) and "GT" (donor) splice sites. ABE can directly edit splice acceptor sites of the adenine (A) base, leading to aberrant gene splicing, which may be further adopted to remodel splicing. However, spliced isoforms triggered with ABE have not been well explored. To address it, we initially generated a cell line harboring C-terminal enhanced GFP (eGFP)-tagged ß-actin (ACTB), in which the eGFP signal can track endogenous ß-actin expression. Expectedly, after the editing of splice acceptor sites, we observed a dramatical decrease in the percentage of eGFP-positive cells and generation of splicing products with the noncanonical splice site. Furthermore, we manipulated Peroxidasin in mouse embryos with ABE, in which a noncanonical acceptor was activated to remodel splicing, successfully generating a mouse disease model of anophthalmia and severely malformed microphthalmia. Collectively, we demonstrate that ABE-mediated splicing remodeling can activate a noncanonical acceptor to manipulate human and mouse genomes, which will facilitate the investigation of basic and translational medicine studies.


Assuntos
Adenina , Sítios de Splice de RNA , Animais , Humanos , Camundongos , Actinas/genética , Sequência de Bases , Edição de Genes , Íntrons , Splicing de RNA , Células HEK293
17.
J Pharm Pharmacol ; 75(12): 1569-1580, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-37862582

RESUMO

OBJECTIVES: This study addresses the bioavailability challenges associated with oral nicotinamide mononucleotide (NMN) administration by introducing an innovative NMN formulation incorporated with hydroxyapatite (NMN-HAP). METHODS: The NMN-HAP was developed using a wet chemical precipitation and physical adsorption method. To assess its superiority over conventional free NMN, we examined NMN, nicotinamide adenine dinucleotide (NAD+), and nicotinamide riboside (NR) levels in mouse plasma and tissues following oral administration of NMN-HAP. KEY FINDINGS: NMN-HAP nanoparticles demonstrated a rod-shaped morphology, with an average size of ~50 nm, along with encapsulation efficiency and drug loading capacity exceeding 40%. In vitro, drug release results indicated that NMN-HAP exhibited significantly lower release compared with free NMN. In vivo studies showed that NMN-HAP extended circulation time, improved bioavailability compared with free NMN, and elevated plasma levels of NMN, NAD+, and NR. Moreover, NMN-HAP administration displayed tissue-specific distribution with a substantial accumulation of NMN, NAD+, and NR in the brain and liver. CONCLUSION: NMN-HAP represents an ideal formulation for enhancing NMN bioavailability, enabling tissue-specific delivery, and ultimately elevating in vivo NAD+ levels. Considering HAP's biocompatible nature and versatile characteristics, we anticipate that this system has significant potential for various future applications.


Assuntos
NAD , Mononucleotídeo de Nicotinamida , Camundongos , Animais , NAD/metabolismo , Mononucleotídeo de Nicotinamida/metabolismo , Disponibilidade Biológica , Encéfalo/metabolismo , Hidroxiapatitas
18.
J Virol ; 97(10): e0091623, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37772826

RESUMO

IMPORTANCE: Gaining insight into the cell-entry mechanisms of swine acute diarrhea syndrome coronavirus (SADS-CoV) is critical for investigating potential cross-species infections. Here, we demonstrated that pretreatment of host cells with tunicamycin decreased SADS-CoV attachment efficiency, indicating that N-linked glycosylation of host cells was involved in SADS-CoV entry. Common N-linked sugars Neu5Gc and Neu5Ac did not interact with the SADS-CoV S1 protein, suggesting that these molecules were not involved in SADS-CoV entry. Additionally, various host proteases participated in SADS-CoV entry into diverse cells with different efficiencies. Our findings suggested that SADS-CoV may exploit multiple pathways to enter cells, providing insights into intervention strategies targeting the cell entry of this virus.


Assuntos
Alphacoronavirus , Infecções por Coronavirus , Endopeptidases , Glicoproteínas , Doenças dos Suínos , Suínos , Internalização do Vírus , Animais , Alphacoronavirus/fisiologia , Infecções por Coronavirus/enzimologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Endopeptidases/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Suínos/virologia , Doenças dos Suínos/enzimologia , Doenças dos Suínos/metabolismo , Doenças dos Suínos/virologia , Internalização do Vírus/efeitos dos fármacos , Tunicamicina/farmacologia , Glicosilação
19.
STAR Protoc ; 4(4): 102563, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37703181

RESUMO

Female receptivity in mating is crucial for successful copulation, but protocols for quantifying female behaviors reflecting receptivity are scarce compared to the analysis of male behaviors. Here, we present a protocol for assessing the sexual receptivity of female Drosophila that considers behaviors from both sexes. We describe steps for preparing and loading flies into a courtship chamber, video recording the behaviors of the pairs, and analyzing their behavioral displays. This protocol includes behavior recognition criteria suitable for typical laboratory settings. For complete details on the use and execution of this protocol, please refer to Yang et al. (2023).1.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Feminino , Masculino , Comportamento Sexual Animal , Corte
20.
Nurse Educ Today ; 130: 105947, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37660588

RESUMO

BACKGROUND: Blended learning is being integrated into undergraduate nursing education at all levels and from all directions. Cognitive engagement is not only an embodiment and guarantee of students' engagement into the curriculum from a cognitive level, deep engagement and high-level thinking, but also an important indicator of whether students are effectively engaged in the blended learning curricula. However, no studies have been seen to investigate the cognitive engagement of nursing undergraduates in the blended learning curricula and its influential factors. OBJECTIVES: To explore nursing undergraduates' cognitive engagement during the blended learning curricula and its influential factors. DESIGN: A convergent parallel mixed-methods was used. Data were collected between November 2021 and May 2022, inclusive. SETTINGS AND PARTICIPANTS: The study was carried out in the nursing school at a university in China. Participants including students undertaking entry to the blended learning curricula. METHODS: In the quantitative component (n = 142), participants' cognitive engagement was investigated and factors associated with it were examined using univariate analysis, correlation analysis and multiple regression analysis. During this period, personal, semi-structured interviews were conducted with a subset of these participants (n = 15) to understand participants' cognitive engagement experiences. RESULTS: The cognitive engagement of nursing undergraduates was at a moderate level and the cognitive engagement experiences were reflected in the four themes of Reconstitution, Connection, Elaboration and Retention. The influential factors of cognitive engagement were learning activities (ß = 0.226, p = 0.004), autonomy (ß = 0.158, p = 0.047), academic self-efficacy (ß = 0.311, p < 0.001, ß = 0.271, p < 0.001) and social interaction (ß = 0.358, p < 0.001). CONCLUSIONS: The cognitive engagement of nursing undergraduates in the blended learning curricula needs to be improved. To maximize promote cognitive engagement of nursing undergraduates in the blended learning curricula, educators should design diverse learning activities, engage in high quality social interactions with students, and maximize students' autonomy and self-efficacy.


Assuntos
Bacharelado em Enfermagem , Estudantes de Enfermagem , Humanos , Aprendizagem , Currículo , Cognição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...