Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-936374

RESUMO

OBJECTIVE@#To explore the clinical value of three-dimensional (3D) visualization technique in laparoscopic D3 radical resection of right colon cancer.@*METHODS@#We retrospectively analyzed the clinical data of 73 patients with right colon cancer undergoing laparoscopic D3 radical operation in our hospital between May, 2019 and March, 2021. Among these patients, 41 underwent enhanced CT examination with 3D visualization reconstruction to guide the actual operation, and 32 underwent enhanced CT examination only before the operation (control group). In 3D visualization group, we examined the coincidence rate between the 3D visualization model and the findings in surgical exploration of the anatomy and variations of the main blood vessels, supplying vessels of the tumor, and the tumor location, and the coincidence rate between the actual surgical plan for D3 radical resection of right colon cancer and the plan formulated based on the 3D model. The operative time, estimated blood loss, unexpected injury of blood vessels, number of harvested lymph nodes, mean time of the first flatus, complications, postoperative hospital stay and postoperative drainage volume were compared between the two groups.@*RESULTS@#The operative time was significantly shorter in 3D visualization group than in the control group (P < 0.05). The volume of blood loss, proportion of unexpected injury of blood vessel, the number of harvested lymph nodes, time of the first flatus, proportion of complications, postoperative hospital stay and postoperative drainage volume did not differ significantly between the two groups (P > 0.05). In the 3D visualization group, the 3D visualization model clearly displayed the shape and direction of the colon, the location of the tumor, the anatomy and variation of the main blood vessels and the blood vessels supplying the cancer, and showed a coincidence rate of 100% with the findings by surgical exploration. The surgical plan for D3 radical resection of right colon cancer was formulated based on the 3D model also showed a coincidence rate of 100% with the actual surgical plan.@*CONCLUSION@#The 3D visualization reconstruction technique allows clear visualization the supplying arteries of the tumor and their variations to improve the efficiency, safety and accuracy of laparoscopic D3 radical resection of right colon cancer.


Assuntos
Humanos , Neoplasias do Colo/cirurgia , Flatulência/cirurgia , Imageamento Tridimensional , Laparoscopia/métodos , Excisão de Linfonodo/métodos , Complicações Pós-Operatórias , Estudos Retrospectivos , Resultado do Tratamento
2.
ACS Appl Mater Interfaces ; 13(38): 45385-45393, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34519490

RESUMO

Electrochemical CO2 reduction reaction (CO2RR) coupled with hydrogen evolution reaction (HER) is a renewable route to produce syngas (CO + H2), an essential feedstock for liquid fuel production. However, the development of high-performance electrocatalyst with tunable H2/CO ratio, high-rate syngas production, and long-term electrochemical stability remains challenging. Here, a metal three-dimensional (3D) printing technique followed by dealloying was utilized to develop three-dimensional hierarchical porous (termed as 3D hp) CuAg catalysts for the concurrent generation of CO and H2. By purposely designing the precursor compositions, the resultant 3D hp CuAg catalysts with a high density of phase-segregated Ag and Cu nanodomains exhibit a tunable H2/CO ratio from 3:1 to 1:2. Through further porosity engineering, the 3D hp CuAg catalysts show significantly enhanced syngas production rate of 140 µmol/h/cm2 and electrochemical stability up to 140 h (which is the highest value reported so far). The remarkable electrochemical stability of the 3D hp CuAg arises from three-level hierarchical porous configurations, wherein the macroporous structure benefits gas bubble growth and detachment, the microporous structure stabilizes the active nanoporous layer, while the nanoporous structure provides a large active surface area and enables efficient mass transfer. The results of this study offer a new vision for the development of hierarchically porous catalysts for CO2 reduction.

3.
ACS Appl Mater Interfaces ; 13(6): 7227-7237, 2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33550809

RESUMO

Finding highly efficient and reusable catalysts for advanced oxidation processes is a crucial endeavor to resolve the severe water pollution problems. Although numerous nanocatalysts have been developed in the past few decades, their recyclability along with sustainably high catalytic efficiency still remain challenging. Here, we propose a new strategy for designing efficient and reusable catalysts, that is, introducing Cu as a reductant into a metallic glass-based catalyst and constructing three-dimensional hierarchical porous architectures via a laser 3D printing technique. The as-printed 3D porous MG/Cu catalysts exhibit exceptional catalytic efficiency in degrading RhB with a normalized rate constant approximately 620 times higher than commercial nano zero-valent iron, outperforming most reported Fenton-type catalysts so far. Strikingly, the catalysts exhibit an excellent reusability and can be used more than 100 times (the highest record so far) without apparent efficiency decay. It is revealed that Cu-doping could improve the surface reducibility and promote the electronic transfer, rendering the 3D-printed MG/Cu catalysts with a sustainably active Fe(II)-rich surface and, therefore, unprecedented reusability. This work offers a broadly applicable design route for the development of advanced catalysts with an outstanding combination of activity and reusability for wastewater treatments.

4.
J Hazard Mater ; 314: 41-50, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27107234

RESUMO

Photocatalytic degradation is one of the most promising methods for removal of fulvic acids (FA), which is a typical category of natural organic contamination in groundwater. In this paper, TiO2/graphene nanocomposites (N-RGO/TiO2) were prepared via simple chemical functionalization and one-step hydrothermal method for efficient photodegradation of FA under illumination of a xenon lamp as light source. Here, p-phenylenediamine was used as not only the linkage chemical agent between TiO2 nanocrystals and graphene, but also the nitrogen dopant for TiO2 nanocrystals and graphene. During the hydrothermal process, facets of TiO2 nanocrystals were modulated with addition of HF, and sizes of TiO2 nanocrystals were controlled by the contents of graphene oxide functionalized with p-phenylenediamine (RGO-NH2). The obtained N-RGO/TiO2 nanocomposites exhibited a much higher photocatalytic activity and stability for degradation of methyl blue (MB) and FA compared with other TiO2 samples under xenon lamp irradiation. For the third cycle, the 10wt%N-RGO/TiO2 catalyst maintains high photoactivity (87%) for the degradation of FA, which is much better than the TiO2-N/F (61%) in 3h. This approach supplies a new strategy to design and synthesize metal oxide and graphene oxide nanocomposites with highly efficient photocatalytic performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA