Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 236
Filtrar
1.
J Neurol Sci ; 457: 122892, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38266518

RESUMO

BACKGROUND AND AIM: The differentiation of isolated cortical venous thrombosis (ICVT) from cerebral amyloid angiopathy (CAA) can be difficult because both diseases share similar neurological symptoms and imaging findings. N-methyl-11C-2-(4'-methylaminophenyl)-6-hydroxybenzo-thiazole (11C-PiB) positron emission tomography (PET) functions as a diagnostic modality for CAA by detecting amyloid deposition. The present prospective study evaluated amyloid deposition using 11C-PiB-PET in consecutive patients with suspected ICVT. METHOD: This study was a prospective observational study. Patients who attended or were hospitalized between May 2019 and March 2020 were included in the analysis. Consecutive patients who met the criteria for suspicion of ICVT were enrolled in the study, and the clinical course, symptoms, imaging findings (including magnetic resonance imaging), and the 11C-PiB-PET findings of each case were analyzed. RESULTS: The study cohort included four patients (64-82 years of age, all women). In one younger patient, 11C-PiB-PET afforded no findings suggestive of CAA, whereas the remaining three patients exhibited 11C-PiB-PET findings suggestive of CAA. CONCLUSION: Although 11C-PiB-PET would be a reasonable modality for distinguishing ICVT from CAA, especially in younger patients, it might be difficult to differentiate ICVT from CAA in elderly patients because of the potential deposition of amyloid. CLINICAL TRIAL REGISTRATION: URL: https://www.umin.ac.jp/ctr/ Unique identifier: UMIN 000037101.


Assuntos
Angiopatia Amiloide Cerebral , Humanos , Feminino , Idoso , Estudos Prospectivos , Angiopatia Amiloide Cerebral/complicações , Angiopatia Amiloide Cerebral/diagnóstico por imagem , Angiopatia Amiloide Cerebral/patologia , Amiloide , Tomografia por Emissão de Pósitrons/métodos , Tiazóis , Imageamento por Ressonância Magnética , Hemorragia Cerebral
2.
Nagoya J Med Sci ; 85(4): 758-771, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38155624

RESUMO

We aimed to elucidate the distribution pattern of the positron emission tomography probe [18F]THK 5351, a marker for astrogliosis and tau accumulation, in healthy aging. We also assessed the relationship between THK5351 retention and resting state networks. We enrolled 62 healthy participants in this study. All participants underwent magnetic resonance imaging/positron emission tomography scanning consisting of T1-weighted images, resting state functional magnetic resonance imaging, Pittsburgh Compound-B and THK positron emission tomography. The preprocessed THK images were entered into a scaled subprofile modeling/principal component analysis to extract THK distribution patterns. Using the most significant THK pattern, we generated regions of interest, and performed seed-based functional connectivity analyses. We also evaluated the functional connectivity overlap ratio to identify regions with high between-network connectivity. The most significant THK distributions were observed in the medial prefrontal cortex and bilateral putamen. The seed regions of interest in the medial prefrontal cortex had a functional connectivity map that significantly overlapped with regions of the dorsal default mode network. The seed regions of interest in the putamen showed strong overlap with the basal ganglia and anterior salience networks. The functional connectivity overlap ratio also showed that three peak regions had the characteristics of connector hubs. We have identified an age-related spatial distribution of THK in the medial prefrontal cortex and basal ganglia in normal aging. Interestingly, the distribution's peaks are located in regions of connector hubs that are strongly connected to large-scale resting state networks associated with higher cognitive function.

3.
J Nucl Med ; 64(9): 1495-1501, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37321821

RESUMO

Tau PET tracers are expected to be sufficiently sensitive to track the progression of age-related tau pathology in the medial temporal cortex. The tau PET tracer N-(4-[18F]fluoro-5-methylpyridin-2-yl)-7-aminoimidazo[1,2-a]pyridine ([18F]SNFT-1) has been successfully developed by optimizing imidazo[1,2-a]pyridine derivatives. We characterized the binding properties of [18F]SNFT-1 using a head-to-head comparison with other reported 18F-labeled tau tracers. Methods: The binding affinity of SNFT-1 to tau, amyloid, and monoamine oxidase A and B was compared with that of the second-generation tau tracers MK-6240, PM-PBB3, PI-2620, RO6958948, JNJ-64326067, and flortaucipir. In vitro binding properties of 18F-labeled tau tracers were evaluated through the autoradiography of frozen human brain tissues from patients with diverse neurodegenerative disease spectra. Pharmacokinetics, metabolism, and radiation dosimetry were assessed in normal mice after intravenous administration of [18F]SNFT-1. Results: In vitro binding assays demonstrated that [18F]SNFT-1 possesses high selectivity and high affinity for tau aggregates in Alzheimer disease (AD) brains. Autoradiographic analysis of tau deposits in medial temporal brain sections from patients with AD showed a higher signal-to-background ratio for [18F]SNFT-1 than for the other tau PET tracers and no significant binding with non-AD tau, α-synuclein, transactiviation response DNA-binding protein-43, and transmembrane protein 106B aggregates in human brain sections. Furthermore, [18F]SNFT-1 did not bind significantly to various receptors, ion channels, or transporters. [18F]SNFT-1 showed a high initial brain uptake and rapid washout from the brains of normal mice without radiolabeled metabolites. Conclusion: These preclinical data suggest that [18F]SNFT-1 is a promising and selective tau radiotracer candidate that allows the quantitative monitoring of age-related accumulation of tau aggregates in the human brain.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Camundongos , Animais , Doenças Neurodegenerativas/metabolismo , Doença de Alzheimer/metabolismo , Piridinas/farmacocinética , Encéfalo/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons
4.
PLoS One ; 18(6): e0287047, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37315033

RESUMO

Astrogliosis is a crucial feature of neuroinflammation and is characterized by the significant upregulation of glial fibrillary acidic protein (GFAP) expression. Hence, visualizing GFAP in the living brain of patients with damaged central nervous system using positron emission tomography (PET) is of great importance, and it is expected to depict neuroinflammation more directly than existing neuroinflammation imaging markers. However, no PET radiotracers for GFAP are currently available. Therefore, neuroimaging with antibody-like affinity proteins could be a viable strategy for visualizing imaging targets that small molecules rarely recognize, such as GFAP, while we need to overcome the challenges of slow clearance and low brain permeability. The E9 nanobody, a small-affinity protein with high affinity and selectivity for GFAP, was utilized in this study. E9 was engineered by fusing a brain shuttle peptide that facilitates blood-brain barrier permeation via two different types of linker domains: E9-GS-ApoE (EGA) and E9-EAK-ApoE (EEA). E9, EGA and EEA were radiolabeled with fluorine-18 using cell-free protein radiosynthesis. In vitro autoradiography showed that all radiolabeled proteins exhibited a significant difference in neuroinflammation in the brain sections created from a rat model constructed by injecting lipopolysaccharide (LPS) into the unilateral striatum of wildtype rats, and an excess competitor displaced their binding. However, exploratory in vivo PET imaging and ex vivo biodistribution studies in the rat model failed to distinguish neuroinflammatory lesions within 3 h of 18F-EEA intravenous injection. This study contributes to a better understanding of the characteristics of small-affinity proteins fused with a brain shuttle peptide for further research into the use of protein molecules as PET tracers for imaging neuropathology.


Assuntos
Doenças Neuroinflamatórias , Tomografia Computadorizada por Raios X , Animais , Ratos , Apolipoproteínas E , Encéfalo/diagnóstico por imagem , Proteína Glial Fibrilar Ácida , Peptídeos , Distribuição Tecidual , Anticorpos de Domínio Único
5.
Naunyn Schmiedebergs Arch Pharmacol ; 396(1): 35-42, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36282300

RESUMO

The history of hitherto existing pharmacology in Japan presented here is authored in commemoration of the 150th anniversary of Naunyn-Schmiedeberg's Archives of Pharmacology. After the publication of the new book of anatomy "Anatomische Tabellen" translated into Japanese in 1774, the foundation of understanding the medical science was gradually formed in Japan under seclusion policy, and, since the Meiji Restoration of 1868, the modernization of Japanese medicine was rapidly fostered on the basis of German medicine. Thus, the Japanese government officially adopted German medicine, and the philosophy and practice of German medical schools were incorporated. Most of the medical texts used in Japan were of German origins, often in Dutch translations, and many Japanese physicians and medical researchers studied abroad in Germany. The start of experimental pharmacology in Japan was also made up by Japanese disciples of Oswald Schmiedeberg, who was the one of founders of the Archives in 1873. Additionally, it was customary for professor candidates in charge of pharmacology in medical faculties in Japan to go to Germany and study pharmacology. Through such historical circumstances, the Japanese Pharmacology Society has been established to fulfill the responsibility for contributing internationally to world-class research achievements in the field of medical sciences by supplying numerous talented pharmacologists. During the course of the development of experimental pharmacology in Japan, the Archives has provided an excellent stage for many Japanese pharmacologists to publish their research outcomes to proliferate them internationally. Without German medicine influence, Japanese pharmacology would not have been what it is today.


Assuntos
Farmacologia , Médicos , Humanos , Alemanha , História do Século XX , Japão
6.
Ann Nucl Med ; 36(8): 777-784, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35781672

RESUMO

OBJECTIVE: Monoamine oxidase B (MAO-B) is highly abundant in reactive astrocytes and upregulated in neuroinflammatory processes. However, the age-related change of MAO-B in amyloid-negative cognitively unimpaired elderly subjects has not yet been sufficiently evaluated on positron emission tomography (PET). 18F-THK5351 is a radiotracer with high affinity to MAO-B, which may potentially serve as an imaging biomarker for detecting neuroinflammation. The purpose of this study was to investigate the age-related topographic change of 18F-THK5351 PET in amyloid-negative cognitively unimpaired elderly subjects. METHODS: The age-related change of 18F-THK5351 retention was evaluated on the visual analysis, voxel and region of interest (ROI)-based analyses using Statistical Parametric Mapping and PETSurfer tool of FreeSurfer in 31 amyloid-negative cognitively unimpaired elderly subjects. RESULTS: On visual inspection, elderly groups showed the spread of 18F-THK5351 accumulation from the medial to inferolateral temporal and basal frontal lobes, and cingulate gyrus. Additionally, voxel- and ROI-based analysis demonstrated the correlation between 18F-THK5351 accumulation and participants' age, especially in the inferior temporal lobes. CONCLUSIONS: This study demonstrated age-dependent increase of 18F-THK5351 retention in amyloid-negative cognitively unimpaired subjects, which suggests an increase in MAO-B positive reactive astrocytes with aging.


Assuntos
Doença de Alzheimer , Monoaminoxidase , Idoso , Envelhecimento , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo
7.
Curr Top Behav Neurosci ; 59: 241-259, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35538301

RESUMO

Microglia, a category of glial cells in the central nervous system (CNS), have attracted much attention because of their important role in neuroinflammation. Many translational studies are currently ongoing to discover novel drugs targeting microglia for the treatment of various CNS disorders, such as Alzheimer's disease, Parkinson's disease (PD), and depression. Recent studies have shown that brain histamine, a neurotransmitter essential for the regulation of diverse brain functions, controls glial cells and neurons. In vitro studies using primary microglia and microglial cell lines have reported that histamine receptors are expressed in microglia and control microglial functions, including chemotaxis, migration, cytokine secretion, and autophagy. In vivo studies have demonstrated that histamine-related reagents could ameliorate abnormal symptoms in animal models of human diseases, such as amyotrophic lateral sclerosis (ALS), PD, and brain ischemia. Several human studies have revealed alterations in histamine receptor levels in ALS and PD, emphasizing the importance of the CNS histamine system, including histamine-dependent microglial modulation, as a therapeutic target for these disorders. In this review article, we summarize histamine-related research focusing on microglial functions.


Assuntos
Histamina , Microglia , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Animais , Encéfalo/metabolismo , Citocinas/metabolismo , Histamina/metabolismo , Histamina/farmacologia , Histamina/uso terapêutico , Humanos
8.
Biochem Biophys Res Commun ; 609: 141-148, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35429681

RESUMO

Histamine is synthesised from l-histidine through the catalysis of histidine decarboxylase (HDC). In the central nervous system (CNS), histamine is exclusively produced in histaminergic neurons located in the posterior hypothalamus and controls various CNS functions. Although histidine was known as a precursor of histamine, the impact of oral histidine intake on brain histamine concentration and brain function has not been fully elucidated. In the present study, we aimed to elucidate the importance of oral histidine supplementation in the histaminergic nervous system and working memory in stressful conditions. First, we confirmed that sleep deprivation by water-floor stress in male mice increased histamine consumption and resulted in histamine reduction and impaired working memory in the Y-maze test. This memory impairment was rescued by intracerebroventricular injection of histamine and histidine, indicating that oral histidine intake could also improve memory function. Next, we examined the impact of histidine intake on brain histamine concentration and neuronal activity. Histidine intake increased extracellular histamine concentration around the prefrontal cortex (PFC) and the basal forebrain (BF), leading to a robust increase in the number of c-fos-positive cells around these areas. Finally, we investigated the beneficial effects of histidine intake on working memory. Histidine supplementation alleviated impaired memory function induced by sleep deprivation. This beneficial effect of histidine on memory was cancelled by intracerebroventricular injection of the HDC inhibitor α-fluoromethylhistidine. These results demonstrate that oral histidine intake replenishes brain histamine and leads to the recovery of impaired working memory induced by sleep deprivation through histaminergic activation.


Assuntos
Depressores do Sistema Nervoso Central , Histidina , Animais , Histamina , Histidina/farmacologia , Histidina Descarboxilase , Masculino , Memória de Curto Prazo , Camundongos , Neurônios , Privação do Sono
9.
Neuropharmacology ; 212: 109065, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35487272

RESUMO

Brain histamine acts as a neurotransmitter in the regulation of various brain activities. Previous studies have shown that histamine N-methyltransferase (HNMT), a histamine-metabolizing enzyme, controls brain histamine concentration and brain function. However, the relative contribution of astrocytic or neuronal HNMT to the regulation of the histaminergic system is still inconclusive. Here, we phenotyped astrocytes-specific HNMT knockout (cKO) mice to clarify the involvement of astrocytic HNMT in histamine clearance and brain function. First, we performed histological examinations using HNMT reporter mice and showed a wide distribution of HNMT in the brain and astrocytic HNMT expression. Then, we created cKO mice by Cre-loxP system and confirmed that HNMT expression in cKO primary astrocytes was robustly decreased. Although total HNMT level in the cortex was not substantially different between control and cKO brains, histamine concentration after histamine release was elevated in cKO cortex. In behavioral tests, impaired motor coordination and lower locomotor activity were observed in the cKO mice. However, anxiety-like behaviors, depression-like behaviors, and memory functions were not altered by astrocytic HNMT disruption. Although sleep analysis demonstrated that the quantity of wakefulness and sleep did not change, the increased power density of delta frequency during wakefulness indicated lower cortical activation in cKO mice. These results demonstrate that astrocytic HNMT contributes to histamine clearance after histamine release in the cortex and plays a role in the regulation of motor coordination, locomotor activity, and vigilance state.


Assuntos
Histamina N-Metiltransferase , Histamina , Animais , Astrócitos/metabolismo , Encéfalo/metabolismo , Histamina/metabolismo , Histamina N-Metiltransferase/genética , Histamina N-Metiltransferase/metabolismo , Camundongos , Vigília/fisiologia
10.
Front Neurosci ; 16: 807435, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35210989

RESUMO

Many neurodegenerative diseases are neuropathologically characterized by neuronal loss, gliosis, and the deposition of misfolded proteins such as ß-amyloid (Aß) plaques and tau tangles in Alzheimer's disease (AD). In postmortem AD brains, reactive astrocytes and activated microglia are observed surrounding Aß plaques and tau tangles. These activated glial cells secrete pro-inflammatory cytokines and reactive oxygen species, which may contribute to neurodegeneration. Therefore, in vivo imaging of glial response by positron emission tomography (PET) combined with Aß and tau PET would provide new insights to better understand the disease process, as well as aid in the differential diagnosis, and monitoring glial response disease-specific therapeutics. There are two promising targets proposed for imaging reactive astrogliosis: monoamine oxidase-B (MAO-B) and imidazoline2 binding site (I2BS), which are predominantly expressed in the mitochondrial membranes of astrocytes and are upregulated in various neurodegenerative conditions. PET tracers targeting these two MAO-B and I2BS have been evaluated in humans. [18F]THK-5351, which was originally designed to target tau aggregates in AD, showed high affinity for MAO-B and clearly visualized reactive astrocytes in progressive supranuclear palsy (PSP). However, the lack of selectivity of [18F]THK-5351 binding to both MAO-B and tau, severely limits its clinical utility as a biomarker. Recently, [18F]SMBT-1 was developed as a selective and reversible MAO-B PET tracer via compound optimization of [18F]THK-5351. In this review, we summarize the strategy underlying molecular imaging of reactive astrogliosis and clinical studies using MAO-B and I2BS PET tracers.

11.
Curr Top Behav Neurosci ; 59: 113-129, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35156186

RESUMO

Although histamine plays a major role in animal models of stress-related disorders, human neuroimaging data are sparse. Histamine H1 receptors in the human brain were first imaged by Professor Kazuhiko Yanai in 1992 by using 11C-doxepin, a potent ligand of H1 receptors, and positron emission tomography (PET). Subsequent work revealed that H1 receptors are reduced in the prefrontal and anterior cingulate cortices in patients with major depressive disorders. A sex difference in H1 receptor binding in the brain has also been found, with women exhibiting more abundant H1 receptor binding than men. Moreover, female patients with anorexia nervosa show higher H1 receptor binding in the amygdala and lentiform nucleus. These studies also found an inverse correlation of depression scores with H1 receptor binding. Histamine is considered to play a major role in the pathophysiology of irritable bowel syndrome (IBS), a representative disorder of brain-gut interactions. Along these lines, hypnotic suggestion dramatically changes the waveforms of viscerosensory cerebral evoked potentials in response to electrical rectal stimulation and these changes are modified by the administration of H1 antagonist. The direction of the H1 antagonist-induced changes in the viscerosensory cerebral evoked potentials differs between IBS patients and healthy controls. Thus, histamine likely plays an important role in stress-related disorders. Further histamine brain imaging studies of humans are warranted.


Assuntos
Transtorno Depressivo Maior , Síndrome do Intestino Irritável , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Transtorno Depressivo Maior/metabolismo , Doxepina/metabolismo , Feminino , Histamina/metabolismo , Humanos , Hipnóticos e Sedativos/metabolismo , Síndrome do Intestino Irritável/metabolismo , Ligantes , Masculino , Neuroimagem , Receptores Histamínicos H1/metabolismo , Tomografia Computadorizada por Raios X
12.
ACS Chem Neurosci ; 13(3): 322-329, 2022 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-35049267

RESUMO

(S)-(2-Methylpyrid-5-yl)-6-[(3-[18F]fluoro-2-hydroxy)propoxy]quinoline ([18F]SMBT-1) was recently developed as a novel class of selective and reversible monoamine oxidase-B (MAO-B) tracers for in vivo imaging of reactive astrogliosis via positron emission tomography. To investigate the effect of the chirality of [18F]SMBT-1 on tracer performance, we synthesized (S)-[18F]6 ([18F]SMBT-1) and (R)-[18F]6 and compared their binding properties, pharmacokinetics, and metabolism. (S)-6 showed higher binding affinity to MAO-B and lower binding affinity to MAO-A than (R)-6, demonstrating a higher selectivity ratio (MAO-B/MAO-A). A pharmacokinetic study in mice demonstrated that both (S)-[18F]6 and (R)-[18F]6 showed sufficient initial brain uptake. However, (S)-[18F]6 was cleared significantly faster from the body. An abundant sulfoconjugate metabolite M2 was observed in plasma for (S)-[18F]6 but not for (R)-[18F]6. In vitro sulfation assays confirmed that (S)-6 was more reactive than (R)-6, consistent with the in vivo findings. Mefenamic acid, a selective sulfotransferase 1A1 (SULT1A1) inhibitor, strongly inhibited the in vitro sulfation of (S)-6 by mouse liver fractions, human liver cytosol fractions, and human recombinant SULT1A1 enzyme. Genetic polymorphisms of SULT1A1 did not affect the sulfation of (S)-6 in vitro. In conclusion, (S)-[18F]6 had a more favorable binding affinity and binding selectivity for MAO-B than (R)-[18F]6. Additionally, (S)-[18F]6 also possessed better pharmacological and metabolic properties than (R)-[18F]6. These results suggest that (S)-[18F]6 ([18F]SMBT-1) is a promising candidate for application in the imaging of MAO-B in vivo.


Assuntos
Monoaminoxidase , Tomografia por Emissão de Pósitrons , Animais , Encéfalo , Gliose , Camundongos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Tomografia por Emissão de Pósitrons/métodos
13.
J Nucl Med ; 63(10): 1560-1569, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35086892

RESUMO

A neuroinflammatory reaction in Alzheimer disease (AD) brains involves reactive astrocytes that overexpress monoamine oxidase-B (MAO-B). 18F-(S)-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline (18F-SMBT-1) is a novel 18F PET tracer highly selective for MAO-B. We characterized the clinical performance of 18F-SMBT-1 PET across the AD continuum as a potential surrogate marker of reactive astrogliosis. Methods: We assessed 18F-SMBT-1 PET regional binding in 77 volunteers (76 ± 5.5 y old; 41 women, 36 men) across the AD continuum: 57 who were cognitively normal (CN) (44 amyloid-ß [Aß]-negative [Aß-] and 13 Aß-positive [Aß+]), 12 who had mild cognitive impairment (9 Aß- and 3 Aß+), and 8 who had AD dementia (6 Aß+ and 2 Aß-). All participants also underwent Aß and tau PET imaging, 3-T MRI, and neuropsychologic evaluation. Tau imaging results were expressed in SUV ratios using the cerebellar cortex as a reference region, whereas Aß burden was expressed in centiloids. 18F-SMBT-1 outcomes were expressed as SUV ratio using the subcortical white matter as a reference region. Results: 18F-SMBT-1 yielded high-contrast images at steady state (60-80 min after injection). When compared with the Aß- CN group, there were no significant differences in 18F-SMBT-1 binding in the group with Aß- mild cognitive impairment. Conversely, 18F-SMBT-1 binding was significantly higher in several cortical regions in the Aß+ AD group but also was significantly lower in the mesial temporal lobe and basal ganglia. Most importantly, 18F-SMBT-1 binding was significantly higher in the same regions in the Aß+ CN group as in the Aß- CN group. When all clinical groups were considered together, 18F-SMBT-1 correlated strongly with Aß burden and much less with tau burden. Although in most cortical regions 18F-SMBT-1 did not correlate with brain volumetrics, regions known for high MAO-B concentrations presented a direct association with hippocampal and gray matter volumes, whereas the occipital lobe was directly associated with white matter hyperintensity. 18F-SMBT-1 binding was inversely correlated with Mini Mental State Examination and the Australian Imaging Biomarkers and Lifestyle's Preclinical Alzheimer Cognitive Composite in some neocortical regions such as the frontal cortex, lateral temporal lobe, and supramarginal gyrus. Conclusion: Cross-sectional human PET studies with 18F-SMBT-1 showed that Aß+ AD patients, but most importantly, Aß+ CN individuals, had significantly higher regional 18F-SMBT-1 binding than Aß- CN individuals. Moreover, in several regions in the brain, 18F-SMBT-1 retention was highly associated with Aß load. These findings suggest that increased 18F-SMBT-1 binding is detectable at the preclinical stages of Aß accumulation, providing strong support for its use as a surrogate marker of astrogliosis in the AD continuum.


Assuntos
Doença de Alzheimer , Quinolinas , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Austrália , Biomarcadores , Estudos Transversais , Feminino , Gliose , Humanos , Inflamação , Masculino , Monoaminoxidase
14.
J Nucl Med ; 63(10): 1551-1559, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35086898

RESUMO

Reactive gliosis, characterized by reactive astrocytes and activated microglia, contributes greatly to neurodegeneration throughout the course of Alzheimer disease (AD). Reactive astrocytes overexpress monoamine oxidase B (MAO-B). We characterized the clinical performance of 18F-(S)-(2-methylpyrid-5-yl)-6-[(3-fluoro-2-hydroxy)propoxy]quinoline (18F-SMBT-1), a novel MAO-B PET tracer as a potential surrogate marker of reactive astrogliosis. Methods: Seventy-seven participants-53 who were elderly and cognitively normal, 7 with mild cognitive impairment, 7 with AD, and 10 who were young and cognitively normal-were recruited for the different aspects of the study. Older participants underwent 3-dimensional magnetization-prepared rapid gradient-echo MRI and amyloid-ß, tau, and 18F-SMBT-1 PET. To ascertain 18F-SMBT-1 selectivity to MAO-B, 9 participants underwent 2 18F-SMBT-1 scans, before and after receiving 5 mg of selegiline twice daily for 5 d. To compare selectivity, 18F-THK5351 studies were also conducted before and after selegiline. Amyloid-ß burden was expressed in centiloids. 18F-SMBT-1 outcomes were expressed as SUV, as well as tissue ratios and binding parameters using the subcortical white matter as a reference region. Results: 18F-SMBT-1 showed robust entry into the brain and reversible binding kinetics, with high tracer retention in basal ganglia, intermediate retention in cortical regions, and the lowest retention in cerebellum and white matter, which tightly follows the known regional brain distribution of MAO-B (R 2 = 0.84). More than 85% of 18F-SMBT-1 signal was blocked by selegiline across the brain, and in contrast to 18F-THK5351, no residual cortical activity was observed after the selegiline regimen, indicating high selectivity for MAO-B and low nonspecific binding. 18F-SMBT-1 also captured the known MAO-B increases with age, with an annual rate of change (∼2.6%/y) similar to the in vitro rates of change (∼1.9%/y). Quantitative and semiquantitative measures of 18F-SMBT-1 binding were strongly associated (R 2 > 0.94), suggesting that a simplified tissue-ratio approach could be used to generate outcome measures. Conclusion: 18F-SMBT-1 is a highly selective MAO-B tracer, with low nonspecific binding, high entry into the brain, and reversible kinetics. Moreover, 18F-SMBT-1 brain distribution matches the reported in vitro distribution and captures the known MAO-B increases with age, suggesting that 18F-SMBT-1 can potentially be used as a surrogate marker of reactive astrogliosis. Further validation of these findings with 18F-SMBT-1 will require examination of a much larger series, including participants with mild cognitive impairment and AD.


Assuntos
Doença de Alzheimer , Quinolinas , Idoso , Doença de Alzheimer/metabolismo , Aminopiridinas , Peptídeos beta-Amiloides , Gliose , Humanos , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Compostos Radiofarmacêuticos/metabolismo , Selegilina
15.
J Alzheimers Dis ; 85(1): 223-234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34776443

RESUMO

BACKGROUND: Alzheimer's disease (AD) is conceptualized as a biological continuum encompassing the preclinical (clinically asymptomatic but with evidence of AD pathology) and clinical (symptomatic) phases. OBJECTIVE: Using 18F-THK5351 as a tracer that binds to both tau and monoamine oxidase B (MAO-B), we investigated the changes in 18F-THK5351 accumulation patterns in AD continuum individuals with positive amyloid PET consisting of cognitively normal individuals (CNp), amnestic mild cognitive impairment (aMCI), and AD and cognitively normal individuals (CNn) with negative amyloid PET. METHODS: We studied 69 individuals (32 CNn, 11 CNp, 9 aMCI, and 17 AD) with structural magnetic resonance imaging, 11C-Pittsburgh compound-B (PIB) and 18F-THK5351 PET, and neuropsychological assessment. 18F-THK5351 accumulation was evaluated with visual analysis, voxel-based analysis and combined region of interest (ROI)-based analysis corresponding to Braak neurofibrillary tangle stage. RESULTS: On visual analysis, 18F-THK5351 accumulation was increased with stage progression in the AD continuum. On voxel-based analysis, there was no statistical difference in 18F-THK5351 accumulation between CNp and CNn. However, a slight increase of the bilateral posterior cingulate gyrus in aMCI and definite increase of the bilateral parietal temporal association area and posterior cingulate gyrus/precuneus in AD were detected compared with CNn. On ROI-based analyses, 18F-THK5351 accumulation correlated positively with supratentorial 11C-PIB accumulation and negatively with the hippocampal volume and neuropsychological assessment. CONCLUSION: The AD continuum showed an increase in 18F-THK5351 with stage progression, suggesting that 18F-THK5351 has the potential to visualize the severity of tau deposition and neurodegeneration in accordance with the AD continuum.


Assuntos
Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Tomografia por Emissão de Pósitrons , Proteínas tau/metabolismo , Idoso , Aminopiridinas , Amnésia/diagnóstico por imagem , Amnésia/metabolismo , Compostos de Anilina , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/metabolismo , Progressão da Doença , Feminino , Fluordesoxiglucose F18 , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Quinolinas , Compostos Radiofarmacêuticos , Índice de Gravidade de Doença , Tiazóis
16.
Curr Top Behav Neurosci ; 59: 193-214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34622396

RESUMO

H1 receptor antagonists, known as H1-antihistamines (AHs), inactivate the histamine H1-receptor thereby preventing histamine causing the primary symptoms of allergic diseases, such as atopic dermatitis, pollinosis, food allergies, and urticaria. AHs, which are classified into first-generation (fgAHs) and second-generation (sgAHs) antihistamines, are the first line of treatment for allergic diseases. Although fgAHs are effective, they cause adverse reactions such as potent sedating effects, including drowsiness, lassitude, and cognitive impairment; anticholinergic effects, including thirst and tachycardia. Consequently, the use of fgAHs is not recommended for allergic diseases. Today, sgAHs, which are minimally sedating and, therefore, may be used at more effective doses, are the first-line treatment for alleviating the symptoms of allergic diseases. Pharmacologically, the use of sedating fgAHs is limited to antiemetics, anti-motion sickness drugs, and antivertigo drugs. The use of histamine H1-receptor occupancy (H1RO) based on positron emission tomography (PET) has been developed for the evaluation of brain penetrability. Based on the results of the H1RO-PET studies, non-brain-penetrating AHs (nbpAHs) have recently been reclassified among sgAHs. The nbpAHs are rapidly acting and exhibit minimal adverse reactions and, thus, are considered first-line drugs for allergic diseases. In this review, we will introduce recent topics on the pharmacodynamics and pharmacokinetics of AHs and make recommendations for the use of nbpAHs as first-line treatment options for allergic diseases.


Assuntos
Antieméticos , Histamina , Antagonistas Colinérgicos , Antagonistas dos Receptores Histamínicos , Antagonistas dos Receptores Histamínicos H1/efeitos adversos
17.
Front Aging Neurosci ; 13: 761010, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912209

RESUMO

Introduction: We aimed to determine whether in vivo tau deposits and monoamine oxidase B (MAO-B) detection using 18F-THK5351 positron emission tomography (PET) can assist in the differential distribution in patients with corticobasal syndrome (CBS), progressive supranuclear palsy (PSP), and Alzheimer's disease (AD) and whether 18F-THK5351 retention of lesion sites in CBS and PSP can correlate with clinical parameters. Methods: 18F-THK5351 PET was performed in 35 participants, including 7, 9, and 10 patients with CBS, PSP, and AD, respectively, and 9 age-matched normal controls. In CBS and PSP, cognitive and motor functions were assessed using the Montreal Cognitive Assessment, Addenbrooke's Cognitive Examination-Revised, and Frontal Assessment Battery, Unified Parkinson's Disease Rating Scale Motor Score, and PSP Rating Scale. Results: 18F-THK5351 retention was observed in sites susceptible to disease-related pathologies in CBS, PSP, and AD. 18F-THK5351 uptake in the precentral gyrus clearly differentiated patients with CBS from those with PSP and AD. Furthermore, 18F-THK5351 uptake in the inferior temporal gyrus clearly differentiated patients with AD from those with CBS and PSP. Regional 18F-THK5351 retention was associated with the cognitive function in CBS and PSP. Conclusion: Measurement of the tau deposits and MAO-B density in the brain using 18F-THK5351 may be helpful for the differential diagnosis of tauopathies and for understanding disease stages.

18.
Nihon Yakurigaku Zasshi ; 156(6): 338-344, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34719565

RESUMO

The role-play for pharmacological education has been developed by Yanagita et al. since 2010 and incorporated into the curriculum of more than 20 medical or pharmaceutical universities in Japan. This case and communication based active learning course provides the practice to acqire fundamental competences for drug therapy, through role playing of medical professionals and patients in simulated clinical settings. The online pharmacological role-play for the first time was performed at Tohoku Medical and Pharmaceutical University Faculty of Medicine during the state of emergency in Japan. We found that the online role-play was as useful as face-to-face role-plays to train appropriate drug prescriptions and communication skills in medical students. In this review, we described the course design, preparation, and operation of online role-play for pharmacological education. We also explained the differences, advantages, and disadvantages between online and face-to-face setting. Finally, we gave examples on-going challenges to the effective use of the online role-play as a core curricular model of pharmacological and pharmacotherapeutic education.


Assuntos
Educação em Enfermagem , Estudantes de Medicina , Comunicação , Currículo , Humanos , Universidades
19.
Sci Rep ; 11(1): 17935, 2021 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-34504120

RESUMO

Designer receptor activated by designer drugs (DREADDs) techniques are widely used to modulate the activities of specific neuronal populations during behavioural tasks. However, DREADDs-induced modulation of histaminergic neurons in the tuberomamillary nucleus (HATMN neurons) has produced inconsistent effects on the sleep-wake cycle, possibly due to the use of Hdc-Cre mice driving Cre recombinase and DREADDs activity outside the targeted region. Moreover, previous DREADDs studies have not examined locomotor activity and aggressive behaviours, which are also regulated by brain histamine levels. In the present study, we investigated the effects of HATMN activation and inhibition on the locomotor activity, aggressive behaviours and sleep-wake cycle of Hdc-Cre mice with minimal non-target expression of Cre-recombinase. Chemoactivation of HATMN moderately enhanced locomotor activity in a novel open field. Activation of HATMN neurons significantly enhanced aggressive behaviour in the resident-intruder test. Wakefulness was increased and non-rapid eye movement (NREM) sleep decreased for an hour by HATMN chemoactivation. Conversely HATMN chemoinhibition decreased wakefulness and increased NREM sleep for 6 h. These changes in wakefulness induced by HATMN modulation were related to the maintenance of vigilance state. These results indicate the influences of HATMN neurons on exploratory activity, territorial aggression, and wake maintenance.


Assuntos
Agressão/efeitos dos fármacos , Antipsicóticos/administração & dosagem , Clozapina/análogos & derivados , Vetores Genéticos/administração & dosagem , Histamina/metabolismo , Região Hipotalâmica Lateral/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Vigília/efeitos dos fármacos , Vigília/genética , Animais , Comportamento Animal/efeitos dos fármacos , Clozapina/administração & dosagem , Locomoção/efeitos dos fármacos , Locomoção/genética , Masculino , Camundongos , Camundongos Transgênicos , Sono de Ondas Lentas/efeitos dos fármacos , Sono de Ondas Lentas/genética
20.
J Biol Chem ; 297(3): 101006, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34310946

RESUMO

Heparan sulfate (HS), a highly sulfated linear polysaccharide, is involved in diverse biological functions in various tissues. Although previous studies have suggested a possible contribution of HS to the differentiation of white adipocytes, there has been no direct evidence supporting this. Here, we inhibited the synthesis of HS chains in 3T3-L1 cells using CRISPR-Cas9 technology, resulting in impaired differentiation of adipocytes with attenuated bone morphogenetic protein 4 (BMP4)-fibroblast growth factor 1 (FGF1) signaling pathways. HS reduction resulted in reduced glucose uptake and decreased insulin-dependent intracellular signaling. We then made heterozygous mutant mice for the Ext1 gene, which encodes an enzyme essential for the HS biosynthesis, specifically in the visceral white adipose tissue (Fabp4-Cre+::Ext1flox/WT mice, hereafter called Ext1Δ/WT) to confirm the importance of HS in vivo. The expression levels of transcription factors that control adipocyte differentiation, such as peroxisome proliferator-activated receptor gamma, were reduced in Ext1Δ/WT adipocytes, which contained smaller, unilocular lipid droplets, reduced levels of enzymes involved in lipid synthesis, and altered expression of BMP4-FGF1 signaling molecules. Furthermore, we examined the impact of HS reduction in visceral white adipose tissue on systemic glucose homeostasis. We observed that Ext1Δ/WT mice showed glucose intolerance because of insulin resistance. Our results demonstrate that HS plays a crucial role in the differentiation of white adipocytes through BMP4-FGF1 signaling pathways, thereby contributing to insulin sensitivity and glucose homeostasis.


Assuntos
Adipócitos Brancos/citologia , Diferenciação Celular/fisiologia , Glucose/metabolismo , Heparitina Sulfato/fisiologia , Homeostase , Resistência à Insulina , Células 3T3-L1 , Adipócitos Brancos/metabolismo , Animais , Proteína Morfogenética Óssea 4/metabolismo , Sistemas CRISPR-Cas , Fator 1 de Crescimento de Fibroblastos/metabolismo , Camundongos , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...