Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(43): 39362-39369, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340117

RESUMO

MoO2 nanowires (NWs), MoO2/MoS2 core-shell NWs, and MoS2 nanotubes (NTs) were synthesized by the turbulent flow chemical vapor deposition of MoO2 using MoO3, followed by sulfurization in the sulfur gas flow. The involvement of MoO x suboxide is suggested by density functional theory (DFT) calculations of the surface energies of MoO2. The thickness of the MoS2 layers can be controlled by precise tuning of sulfur vapor flow and temperatures. MoS2 had an armchair-type winding topology due to the epitaxial relation with the MoO2 NW surface. A single ∼ few-layer MoO2/MoS2 core-shell structure showed photoluminescence after the treatment with a superacid. The resistivities of an individual MoO2 NW and a MoS2 NT were measured, and they showed metallic and semiconducting resistivity-temperature relationships, respectively.

2.
ACS Omega ; 7(32): 28618-28623, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990455

RESUMO

We report the crystal growth of pentacene from a solution of naphthalene. The solubility of pentacene in naphthalene was evaluated by optical absorption at elevated temperature. The crystal growth was performed in an H-shaped sealed glass tube or metal vessels sealed with ultrahigh-vacuum compatible flanges placed in heated two-zone aluminum blocks. The obtained crystals had a single-crystal-like appearance and flat surface. They were made of aligned microtwins of the "bulk type" (interlayer spacing 14.5 Å) polymorph.

3.
Nanomaterials (Basel) ; 11(4)2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33921643

RESUMO

A metal-organic framework (MOF) consisting of Cu-benzenetricarboxylic acid was processed under ultrahigh pressure (5 GPa) and at temperature of up to 500 °C. The products were characterized with TEM, FTIR, and XAFS. The decomposition of the MOF started at 200 °C at 5 GPa. This temperature was much lower than that in the vacuum. Single-nanometer Cu nanoparticles were obtained in carbon matrix, which was significantly smaller than the Cu particles prepared at ambient pressure. The catalytic activity for Huisgen cycloaddition was examined, and the sample processed at 5 GPa showed a much improved performance compared with that of the MOF-derived Cu nanoparticles prepared without high pressure.

4.
Nanomaterials (Basel) ; 11(3)2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33800144

RESUMO

We found that oxidized Cu nanoparticles can catalyze the growth of boron nitride nanotubes from borazine via plasma-assisted chemical vapor deposition. The Raman spectra suggest that the formation of thin-walled nanotubes show a radial breathing mode vibration. The presence of oxygen in the plasma environment was necessary for the growth of the nanotubes, and a part of the nanotubes had a core shell structure with a cupper species inside it. In atomic resolution transmission electron microscope (TEM) images, Cu2O was found at the interface between the Cu-core and turbostratic BN-shell. The growth mechanism seemed different from that of carbon nanotube core-shell structures. Therefore, we pointed out the important role of the dynamic morphological change in the Cu2O-Cu system.

5.
Materials (Basel) ; 14(1)2020 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-33375732

RESUMO

Two-dimensional covalent organic frameworks (2D-COFs) have been of increasing interest in the past decade due to their porous structures that ideally can be highly ordered. One of the most common routes to these polymers relies on Schiff-base chemistry, i.e., the condensation reaction between a carbonyl and an amine. In this report, we elaborate on the condensation of 3,6-dibromobenzene-1,2,4,5-tetraamine with hexaketocyclohexane (HKH) and the subsequent carbonylation of the resulting COF, along with the possibility that the condensation reaction on HKH can result in a trans configuration resulting in the formation of a disordered 2D-COF. This strategy enables modification of COFs via bromine substitution reactions to place functional groups within the pores of the materials. Ion-sieving measurements using membranes from this COF, reaction of small molecules with unreacted keto groups along with modeling studies indicate disorder in the COF polymerization process. We also present a Monte Carlo simulation that demonstrates the influence of even small amounts of disorder upon both the 2D and 3D structure of the resulting COF.

6.
J Colloid Interface Sci ; 567: 369-378, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32070882

RESUMO

Two-dimensional (2D) graphitic carbon nitride (g-C3N4) nanoplates (CNNP) have become a hot research topic in photocatalysis due to their small thickness and large specific surface area that favors charge transport and catalytic surface reactions. However, the wide application of 2D g-C3N4 nanoplates prepared by ordinary methods suffers from increased band gaps with a poor solar harvesting capability caused by the strong quantum confinement effect and reduced conjugation distance. In this paper, a facile approach of exfoliation and the following fast thermal treatment of the bulk g-C3N4 is proposed to obtain a porous few-layered g-C3N4 with nitrogen defects. Due to the preferable crystal, textural, optical and electronic structures, the as-obtained porous CNNP demonstrated a significantly improved photocatalytic activity towards water splitting than the bulk g-C3N4 and even the 3 nm-thick CNNP obtained by sugar-assisted exfoliation of the bulk g-C3N4. The difference in the enhancement factors between the H2O splitting and organic decomposition has revealed the effect of N defects. This study offers insightful outlooks on the scalable fabrication of a porous few-layered structure with a promoted photocatalytic performance.

7.
Sci Rep ; 7(1): 7009, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765592

RESUMO

The application of magnetic oxides in spintronics has recently attracted much attention. The epitaxial growth of magnetic oxide on Si could be the first step of new functional spintronics devices with semiconductors. However, epitaxial spinel ferrite films are generally grown on oxide substrates, not on semiconductors. To combine oxide spintronics and semiconductor technology, we fabricated Fe3O4 films through epitaxial growth on a Si(111) substrate by inserting a γ-Al2O3 buffer layer. Both of γ-Al2O3 and Fe3O4 layer grew epitaxially on Si and the films exhibited the magnetic and electronic properties as same as bulk. Furthermore, we also found the buffer layer dependence of crystal structure of Fe3O4 by X-ray diffraction and high-resolution transmission electron microscope. The Fe3O4 films on an amorphous-Al2O3 buffer layer grown at room temperature grew uniaxially in the (111) orientation and had a textured structure in the plane. When Fe3O4 was deposited on Si(111) directly, the poly-crystal Fe3O4 films were obtained due to SiOx on Si substrate. The epitaxial Fe3O4 layer on Si substrates enable us the integration of highly functional spintoronic devices with Si technology.

8.
ACS Omega ; 2(8): 5271-5282, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457798

RESUMO

The relationship of liquidus temperatures among six binary and four ternary phases in a Ag-Al-Sn-Zn system was analyzed by means of statistical modeling. Four statistical models to predict changes in the liquidus temperatures in Ag-Al-Sn-Zn were proposed on the basis of different hypotheses derived from macroscopic and microscopic standpoints. The results of interpolation tests to evaluate the prediction accuracies of the ternary liquidus temperatures suggested that the multivariate regression model based on binary liquidus temperatures, interactive binary liquidus temperatures, and products of atomic ratios was found to be the most effective among the four models. It was numerically shown that the prediction accuracies of the liquidus temperatures in local ternary systems of Ag-Al-Sn-Zn can be improved further by using the models identified in their neighboring systems. Finally, the possibility to extract the general trend and the abnormal combination of elements for the prediction of liquidus temperatures was discussed on the basis of the statistical framework we considered.

9.
Sci Rep ; 6: 35408, 2016 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-27748431

RESUMO

The water vapor transmission rate (WVTR) of a gas barrier coating is a critically important parameter for flexible organic device packaging, but its accurate measurement without mechanical stress to ultrathin films has been a significant challenge in instrumental analysis. At the current stage, no reliable results have been reported in the range of 10-6 g m-2 day-1 that is required for organic light emitting diodes (OLEDs). In this article, we describe a solution for this difficult, but important measurement, involving enhanced sensitivity by a cold trap, stabilized temperature system, pumped sealing and calibration by a standard conductance element.

10.
J Nanosci Nanotechnol ; 16(4): 3223-7, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27451608

RESUMO

We report detailed experiments on chemical vapor deposition of an atomic' layer semiconductor MoS2. We developed a new type of CVD system in which MoO3 and S sources are separately supplied to the substrates. It has become possible to precisely control the supply of the materials separately in the order of seconds. Raman and XPS analysis of the films grown under various conditions revealed that the initially obtained films are S-deficient and complete stoichiometry is reached after several minutes under S vapor flow.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...