Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400451, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828672

RESUMO

Wound infections pose a major healthcare issue, affecting the well-being of millions of patients worldwide. Effective intervention and on-site detection are important in wound management. However, current approaches are hindered by time-consuming analysis and a lack of technology for real-time monitoring and prompt therapy delivery. In this study, a smart wound patch system (SWPS) designed for wireless closed-loop and in-situ wound management is presented. The SWPS integrates a microfluidic structure, an organic electrochemical transistor (OECT) based sensor, an electrical stimulation module, and a miniaturized flexible printed circuit board (FPCB). The OECT incorporates a bacteria-responsive DNA hydrogel-coated gate for continuous monitoring of bacterial virulence at wound sites. Real-time detection of OECT readings and on-demand delivery of electrical cues to accelerate wound healing is facilitated by a mobile phone application linked with an FPCB containing low-power electronics equipped with parallel sensing and stimulation circuitry. In this proof-of-concept study, the functionality of the SWPS is validated and its application both in vitro and in vivo is demonstrated. This proposed system expands the arsenal of tools available for effective wound management and enables personalized treatment.

2.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791522

RESUMO

The role of lncRNA and circRNA in wheat grain development is still unclear. The objectives of this study were to characterize the lncRNA and circRNA in the wheat grain development and to construct the interaction network among lncRNA, circRNA, and their target miRNA to propose a lncRNA-circRNA-miRNA module related to wheat grain development. Full transcriptome sequencing on two wheat varieties (Annong 0942 and Anke 2005) with significant differences in 1000-grain weight at 10 d (days after pollination), 20 d, and 30 d of grain development were conducted. We detected 650, 736, and 609 differentially expressed lncRNA genes, and 769, 1054, and 1062 differentially expressed circRNA genes in the grains of 10 days, 20 days and 30 days after pollination between Annong 0942 and Anke 2005, respectively. An analysis of the lncRNA-miRNA and circRNA-miRNA targeting networks reveals that circRNAs exhibit a more complex and extensive interaction network in the development of cereal grains and the formation of grain shape. Central to these interactions are tae-miR1177, tae-miR1128, and tae-miR1130b-3p. In contrast, lncRNA genes only form a singular network centered around tae-miR1133 and tae-miR5175-5p when comparing between varieties. Further analysis is conducted on the underlying genes of all target miRNAs, we identified TaNF-YB1 targeted by tae-miR1122a and TaTGW-7B targeted by miR1130a as two pivotal regulatory genes in the development of wheat grains. The quantitative real-time PCR (qRT-PCR) and dual-luciferase reporter assays confirmed the target regulatory relationships between miR1130a-TaTGW-7B and miR1122a-TaNF-YB1. We propose a network of circRNA and miRNA-mediated gene regulation in the development of wheat grains.


Assuntos
Grão Comestível , Regulação da Expressão Gênica de Plantas , MicroRNAs , RNA Circular , RNA Longo não Codificante , Triticum , Triticum/genética , Triticum/crescimento & desenvolvimento , RNA Longo não Codificante/genética , RNA Circular/genética , RNA Circular/metabolismo , MicroRNAs/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Redes Reguladoras de Genes , RNA de Plantas/genética , Perfilação da Expressão Gênica
3.
BMC Psychiatry ; 24(1): 387, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38783266

RESUMO

BACKGROUND: Low concentrations of S100B have neurotrophic effects and can promote nerve growth and repair, which plays an essential role in the pathophysiological and histopathological alterations of major depressive disorder (MDD) during disease development. Studies have shown that plasma S100B levels are altered in patients with MDD. In this study, we investigated whether the plasma S100B levels in MDD differ between genders. METHODS: We studied 235 healthy controls (HCs) (90 males and 145 females) and 185 MDD patients (65 males and 120 females). Plasma S100B levels were detected via multifactor assay. The Mahalanobis distance method was used to detect the outliers of plasma S100B levels in the HC and MDD groups. The Kolmogorov-Smirnov test was used to test the normality of six groups of S100B samples. The Mann-Whitney test and Scheirer-Ray-Hare test were used for the comparison of S100B between diagnoses and genders, and the presence of a relationship between plasma S100B levels and demographic details or clinical traits was assessed using Spearman correlation analysis. RESULTS: All individuals in the HC group had plasma S100B levels that were significantly greater than those in the MDD group. In the MDD group, males presented significantly higher plasma S100B levels than females. In the male group, the plasma S100B levels in the HC group were significantly higher than those in the MDD group, while in the female group, no significant difference was found between the HC and MDD groups. In the male MDD subgroup, there was a positive correlation between plasma S100B levels and years of education. In the female MDD subgroup, there were negative correlations between plasma S100B levels and age and suicidal ideation. CONCLUSIONS: In summary, plasma S100B levels vary with gender and are decreased in MDD patients, which may be related to pathological alterations in glial cells.


Assuntos
Transtorno Depressivo Maior , Subunidade beta da Proteína Ligante de Cálcio S100 , Humanos , Transtorno Depressivo Maior/sangue , Masculino , Feminino , Subunidade beta da Proteína Ligante de Cálcio S100/sangue , Adulto , Fatores Sexuais , Pessoa de Meia-Idade , Caracteres Sexuais , Biomarcadores/sangue , Estudos de Casos e Controles
4.
Phytomedicine ; 129: 155679, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38701542

RESUMO

BACKGROUND: As the largest organ of the body, the skin is constantly subjected to ultraviolet radiation (UVR), leading to inflammations and changes that mirror those seen in chronological aging. Although various small molecule drugs have been explored for treating skin photoaging, they typically suffer from low stability and a high incidence of adverse reactions. Consequently, the continued investigation of photoaging treatments, particularly those utilizing herbal products, remains a critical clinical endeavor. One such herbal product, Lapagyl, is derived from the bark of the lapacho tree and possesses antioxidant efficacies that could be beneficial in combating skin photoaging. PURPOSE: This research aimed to evaluate the efficacy of the herbal product Lapagyl in combating UVR-induced skin photoaging. Additionally, it sought to unravel the mechanisms by which Lapagyl promotes the regeneration of the skin extracellular matrix. METHODS: To investigate whether Lapagyl can alleviate skin aging and damage, a UVR radiation model was established using SKH-1 hairless mice. The dorsal skins of these mice were evaluated for wrinkle formation, texture, moisture, transepidermal water loss (TEWL), and elasticity. Pathological assessments were conducted to determine Lapagyl's efficacy. Additionally, single-cell sequencing and spectrum analysis were employed to elucidate the working mechanisms and primary components of Lapagyl in addressing UVR-induced skin aging and injury. RESULTS: Lapagyl markedly reduced UVR-induced wrinkles, moisture loss, and elasticity decrease in SKH-1 mice. Single-cell sequencing demonstrated that Lapagyl corrected the imbalance in cell proportions caused by UVR, decreased UVR-induced ROS expression, and protected basal and spinous cells from skin damage. Additionally, Lapagyl effectively prevented the entry of inflammatory cells into the skin by reducing CCL8 expression and curtailed the UVR-induced formation of Foxp3+ regulatory T cells (Tregs) in the skin. Both pathological assessments and ex vivo skin model results demonstrated that Lapagyl effectively reduced UVR-induced damage to collagen and elastin. Spectrum analysis identified Salidroside as the primary compound remaining in the skin following Lapagyl treatment. Taken together, our study elucidated the skin protection mechanism of the herbal product Lapagyl against UVR damage at the cellular level, revealing its immunomodulatory effects, with salidroside identified as the primary active compound for skin. CONCLUSION: Our study provided a thorough evaluation of Lapagyl's protective effects on skin against UVR damage, delving into the mechanisms at the cellular level. We discovered that Lapagyl mitigates skin inflammation and immunosuppression by regulating Foxp3+ Tregs and the CCL pathway. These insights indicate that Lapagyl has potential as a novel therapeutic option for addressing skin photoaging.


Assuntos
Fatores de Transcrição Forkhead , Camundongos Pelados , Envelhecimento da Pele , Pele , Linfócitos T Reguladores , Raios Ultravioleta , Animais , Feminino , Camundongos , Antioxidantes/farmacologia , Quimiocinas/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Inflamação , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Envelhecimento da Pele/efeitos da radiação , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/efeitos da radiação , Transcriptoma/efeitos dos fármacos
5.
Huan Jing Ke Xue ; 45(5): 3059-3068, 2024 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-38629566

RESUMO

Research on microplastics (MPs) is gaining more attention in the soil environment, but their impact on soil microbiota and related nitrogen processes remains poorly understood. Nitrous oxide (N2O) is one of the important greenhouse gases of the nitrogen cycle in agricultural soil, which mainly originates from microbial-mediated nitrogen (N) transformation processes. Microplastics can influence soil nitrogen transformation, as well as nitrogen-related functional enzymes and genes, and its enrichment may profoundly affect the N2O emissions in soil. However, because of the complexity of the properties of MPs, variations in experimental conditions, and spatial-temporal scales, the results on the effects of MPs on soil N2O emissions, nitrogen content, enzymes activities, and nitrogen functional genes remain inconsistent. Additionally, there is a lack of research conducted at broader experimental scales (e.g., pot scale), from diverse perspectives (e.g., denitrification or DNRA), and using advanced techniques (e.g., stable isotope approaches) to elucidate the underlying mechanisms. Therefore, to comprehend the environmental risk of MPs on soil from multiple perspectives, this review summarized the impact of MPs on soil N cycling from previous published research to provide a knowledge basis and gain holistic insights into the potential impact of soil microplastic enrichment on N2O emission patterns in agricultural soils under climate change conditions.

6.
J Microbiol Biol Educ ; 25(1): e0019723, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38488358

RESUMO

Laboratory courses offer a unique opportunity, and sometimes challenge, to engage students in projects where they can experience ownership and authentic science practices. An important science practice is writing, which can lead to increased learning about concepts and science communication. Experiencing a sense of ownership in research can lead to various student outcomes, such as increased motivation, greater interest in research, and higher retention in STEM fields. Although previous work has extracted aspects of ownership from students' descriptions of research experiences, studies have not examined directly how students define and perceive ownership. In addition, we do not have a clear idea of whether a sense of ownership is related to student attitudes toward scientific writing in a lab course setting. To better understand the relationship between ownership and writing directly from students' perspectives, we used analysis of student responses to surveys and interviews in an upper-division laboratory course. Using a grounded theory approach for the analysis of 167 survey responses and 9 interviews, we found that students have varying perceptions of project ownership, with the most frequent being opportunities to contribute ideas and shape the project (autonomy), doing the work, and leadership. Students largely perceived that increased ownership had positive influences on their writing, such as increased understanding and thinking, freedom in writing, and increased motivation. Learning about how students perceive ownership in the context of a lab course is useful for considering how lab course structure may support the development of a sense of ownership and may influence how we can engage students in meaningful writing practices.

7.
Biomed Pharmacother ; 172: 116320, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387134

RESUMO

BACKGROUND: Mitochondrial redox imbalance underlies the pathophysiology of type2 diabetes mellitus (T2DM), and is closely related to tissue damage and dysfunction. Studies have shown the beneficial effects of dietary strategies that elevate ß-hydroxybutyrate (BHB) levels in alleviating T2DM. Nevertheless, the role of BHB has not been clearly elucidated. METHODS: We performed a spectral study to visualize the preventive effects of BHB on blood and multiorgan mitochondrial redox imbalance in T2DM mice via using label-free resonance Raman spectroscopy (RRS), and further explored the impact of BHB therapy on the pathology of T2DM mice by histological and biochemical analyses. FINDINGS: Our data revealed that RRS-based mitochondrial redox states assay enabled clear and reliable identification of the improvement of mitochondrial redox imbalance by BHB, evidenced by the reduction of Raman peak intensity at 750 cm-1, 1128 cm-1 and 1585 cm-1 in blood, tissue as well as purified mitochondria of db/db mice and the increase of tissue mitochondrial succinic dehydrogenase (SDH) staining after BHB treatment. Exogenous supplementation of BHB was also found to attenuate T2DM pathology related to mitochondrial redox states, involving organ injury, blood glucose control, insulin resistance and systemic inflammation. INTERPRETATION: Our findings provide strong evidence for BHB as a potential therapeutic strategy targeting mitochondria for T2DM.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Camundongos , Animais , Análise Espectral Raman , Ácido 3-Hidroxibutírico/farmacologia , Mitocôndrias , Oxirredução , Diabetes Mellitus Tipo 2/tratamento farmacológico
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123724, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38070314

RESUMO

A high-precision pH monitoring system over a wide pH range is introduced. The system comprises a cavity-enhancement module constructed by two high-reflectivity mirrors, a microfluidic pH sensing chip based on a binary-indicator membrane of Congo red and m-cresol purple, and a hyperspectral transmission module. This structure extends the effective absorption optical path of the sensing chip, significantly amplifying the spectral differences at various pH values. The spectrum of the transmitted light is recorded by a self-developed hyperspectral module and then converted to broadband cavity-enhanced absorption spectrum (BBCEAS) via the Beer-Lambert law. An artificial neural network (ANN) is employed to predict pH values of the solution. With such a design, this system exhibits a wide detecting range of 2 M [H+] - 2 M [OH-] (corresponding to pH -0.3-14.3) with a response time of about 120 s. The system can achieve a higher detection accuracy with root mean square error (RMSE) of 0.073, as compared to 0.137 without the cavity enhancement. The system also possesses good properties of repeatability, long-term stability, ion resistance, and organic corrosion resistance. These excellent properties make the proposed system a promising candidate technology for harsh environments, such as seawater acidification warning, chemical plant sewage monitoring, and biological sample detection.

9.
J Phys Chem Lett ; 15(1): 23-33, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38127901

RESUMO

We used a nonadiabatic molecular dynamics simulation to determine the carrier dynamics of a graphene/ZnV2O6 heterostructure in the search for an effective photocatalyst material. The C-2p orbital promotes the wave function overlap, guiding electrons to move between graphene and ZnV2O6, successfully achieving good mixing with the valence and conduction bands in ZnV2O6 materials, which is conducive to supporting carrier migration. The overlap between graphene/ZnV2O6 electrons and hole wave functions is less than that of ZnV2O6, and there is small absolute nonadiabatic coupling. The charge separation caused by graphene increases the carrier lifetime and prevents nonradiative electron-hole recombination. This study reveals the microscopic mechanism of extending the carrier lifetime of ZnV2O6 by introducing graphene, providing useful insights for regulating the electronic structure, promoting electron transfer and ultrafast electron and hole transfer. This strategy provides design considerations for advanced photocatalytic materials.

10.
Front Bioeng Biotechnol ; 11: 1256340, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149176

RESUMO

In this paper, we demonstrate a surface-enhanced Raman spectroscopy (SERS) biosensor based on the self-assembly of gold nanorods (AuNRs) for the specific detection of airway inflammatory factors in diluted sputum. The AuNR surface was modified with an antibody that was able to specifically recognize an airway inflammatory factor, interleukin-5 (IL-5), so that a end-to-end self-assembly system could be obtained, resulting in an order of magnitude amplification of the Raman signal and greatly improved sensitivity. Meanwhile, the outer layer of the biosensor was coated with silicon dioxide, which improved the stability of the system and facilitated its future applications. When the detected concentration was in the range of 0.1-50 pg/mL, the SERS signal generated by the sensor showed a good linear relationship with the IL-5 concentration. Moreover, it had satisfactory performance in diluted sputum and clinical subjects with asthma, which could achieve sensitive detection of the airway inflammatory factor IL-5. Overall, the developed biosensor based on the SERS effect exhibited the advantages of rapid and sensitive detecting performance, which is suitable for monitoring airway inflammatory factors in sputum.

11.
Animals (Basel) ; 13(21)2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37958169

RESUMO

Estrus involves a series of complex physiological signs and changes in behavior before ovulation, which play a crucial role in animal reproduction. However, there have been few studies that evaluate behaviors during the different stages of estrus cycle in female rabbits. Therefore, more detailed information is needed on distinguishing the various stages of the estrous cycle. This study explored the behavioral and physiological differences at various estrous cycle stages in female New Zealand White rabbits. The continuous recording method was employed to record the daily behaviors of twenty postpartum female rabbits during the estrous cycle. Compared with the diestrus stage, the duration of foraging and drinking behavior in estrus decreased significantly, and the frequency of grooming and biting behaviors increased (p < 0.05). Differences in reproductive hormone levels (FSH, LH, P4, and E2) and follicle development were measured at each stage via ELISA and HE staining. The FSH and LH levels showed an increasing trend and then decreased, with the lowest being in late estrus (p < 0.05). The P4 level was the lowest in estrus (p < 0.05), and E2 showed a gradually increasing trend. There was no significant difference in the number of primordial follicles at each stage, but the number of primary follicles in estrus was significantly higher than at the other stages (p < 0.05). To further understand the molecular regulation mechanism of the estrous cycle in female rabbits, we analyzed the ovarian transcription patterns of female rabbits in diestrus (D group) and estrus (E group) employing RNA-seq. A total of 967 differentially expressed genes (DEGs) were screened from the ovaries of female rabbits between the diestrus and estrus groups. A KEGG analysis of DEGs enriched in the estrogen signaling pathway, aldosterone synthesis, and secretion pathway, such as CYP19A1 and IGF1R, was performed. The rabbits' behavior, related physiological hormones, and molecular regulation also differed at different estrous cycle stages. The results provide recommendations for the adequate management practices of postpartum re-estrus and breeding female rabbits.

12.
Int J Mol Sci ; 24(19)2023 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-37833923

RESUMO

RNA N6-methyladenosine (m6A) modification is one of the principal post-transcriptional modifications and plays a dynamic role in testicular development and spermatogenesis. However, the role of m6A in porcine testis is understudied. Here, we performed a comprehensive analysis of the m6A transcriptome-wide profile in Shaziling pig testes at birth, puberty, and maturity. We analyzed the total transcriptome m6A profile and found that the m6A patterns were highly distinct in terms of the modification of the transcriptomes during porcine testis development. We found that key m6A methylated genes (AURKC, OVOL, SOX8, ACVR2A, and SPATA46) were highly enriched during spermatogenesis and identified in spermatogenesis-related KEGG pathways, including Wnt, cAMP, mTOR, AMPK, PI3K-Akt, and spliceosome. Our findings indicated that m6A methylations are involved in the complex yet well-organized post-transcriptional regulation of porcine testicular development and spermatogenesis. We found that the m6A eraser ALKBH5 negatively regulated the proliferation of immature porcine Sertoli cells. Furthermore, we proposed a novel mechanism of m6A modification during testicular development: ALKBH5 regulated the RNA methylation level and gene expression of SOX9 mRNA. In addition to serving as a potential target for improving boar reproduction, our findings contributed to the further understanding of the regulation of m6A modifications in male reproduction.


Assuntos
Epigenoma , Transcriptoma , Suínos , Masculino , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Maturidade Sexual , Testículo/metabolismo , RNA/metabolismo
13.
BMC Nurs ; 22(1): 387, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853431

RESUMO

BACKGROUND: Workplace violence is a worldwide concern, and particularly affects nursing students. It has a seriously negative impact on nursing students' clinical learning experience and their physical and mental health. This study explored whether there are differences in psychological responses and coping styles among different gender nursing students after exposure to workplace violence, and investigated the causes for these differences. METHODS: We enrolled 22 nursing undergraduates from Guangzhou Medical University and Zunyi Medical University, China. Phenomenological qualitative research and online semi-structured interviews were conducted. The data were analyzed by the Colaizzi seven-step content analysis method. RESULTS: Two categories were collated: psychological experience and coping styles. Three themes of the former were extracted: negative emotional experience, low level of professional identity, and negative effect on self-efficacy. Two themes of the latter: responses to violence and adjustment after violence. In addition, fourteen subthemes were extracted. CONCLUSIONS: Different gender nursing students have different psychological experience and coping styles in the face of workplace violence. The causes of the differences are likely related to sociocultural factors and psychological gender status.

14.
Plant Sci ; 332: 111727, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37149228

RESUMO

Rerouting the starch biosynthesis pathway in maize can generate specialty types, like sweet corn and waxy corn, with a drastically increasing global demand. Hence, a fine-tuning of starch metabolism is relevant to create diverse maize cultivars for end-use applications. Here, we characterized a new maize brittle endosperm mutant, referred to as bt1774, which exhibited decreased starch content but a dramatic increase of soluble sugars at maturity. Both endosperm and embryo development was impaired in bt1774 relative to the wild-type (WT), with a prominently arrested basal endosperm transfer layer (BETL). Map-based cloning revealed that BRITTLE ENDOSPERM2 (Bt2), which encodes a small subunit of ADP-glucose pyrophosphorylase (AGPase), is the causal gene for bt1774. A MuA2 element was found to be inserted into intron 2 of Bt2, leading to a severe decrease of its expression, in bt1774. This is in line with the irregular and loosely packed starch granules in the mutant. Transcriptome of endosperm at grain filling stage identified 1,013 differentially expressed genes in bt1774, which were notably enriched in the BETL compartment, including ZmMRP1, Miniature1, MEG1, and BETLs. Gene expression of the canonical starch biosynthesis pathway was marginally disturbed in bt1774. Combined with the residual 60 % of starch in this nearly null mutant of Bt2, this data strongly suggests that an AGPase-independent pathway compensates for starch synthesis in the endosperm. Consistent with the BETL defects, zein accumulation was impaired in bt1774. Co-expression network analysis revealed that Bt2 probably has a role in intracellular signal transduction, besides starch synthesis. Altogether, we propose that Bt2 is likely involved in carbohydrate flux and balance, thus regulating both the BETL development and the starchy endosperm filling.


Assuntos
Endosperma , Zea mays , Endosperma/genética , Endosperma/metabolismo , Zea mays/genética , Zea mays/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismo , Glucose-1-Fosfato Adenililtransferase/genética , Glucose-1-Fosfato Adenililtransferase/metabolismo
15.
Phys Chem Chem Phys ; 25(17): 12352-12362, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37089118

RESUMO

We have investigated the surface structure and relative stability of ZnV2O6(001) using a thermodynamic technique based on density functional theory (DFT). We built Zn-V-O surface phase diagrams of various surface terminations using the obtained surface Gibbs free energy. In this study, we selected nine different surface terminations along the (001) crystal plane to elucidate that the E, G, H, and I terminations (as shown in Table 1) are the most stable configurations. We found that although their stability varies widely, the four terminations on the ZnV2O6(001) surface can be stabilized under specific thermodynamic equilibrium circumstances. Furthermore, we calculated the surface electronic structures of the four surface terminations and found that there are surface states conducive to visible light absorption at the G, H, and I terminations. The different termination structures are significant in improving the range and intensity of light absorption of ZnV2O6 in specific regions. The fact that the work functions fluctuate significantly for different surface terminations suggests that the work function of ZnV2O6 can be changed to increase photocatalytic activity by achieving thermodynamically favored surface terminations under appropriate conditions. The obtained surface phase diagram will further lay a foundation for the study of the ZnV2O6 surface. These results may help to explore the inherent properties of the ZnV2O6 surface and provide useful strategies for future experimental research on ZnV2O6-based photocatalysts.

16.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047150

RESUMO

The regulatory role of non-CpG methylation in mammals has been important in whole-genome bisulfite sequencing. It has also been suggested that non-CpG methylation regulates gene expression to affect the development and health of mammals. However, the dynamic regulatory mechanisms of genome-wide, non-CpG methylation during testicular development still require intensive study. In this study, we analyzed the dataset from the whole-genome bisulfite sequencing (WGBS) and the RNA-seq of precocious porcine testicular tissues across two developmental stages (1 and 75 days old) in order to explore the regulatory roles of non-CpG methylation. Our results showed that genes regulated by non-CpG methylation affect the development of testes in multiple pathways. Furthermore, several hub genes that are regulated by non-CpG methylation during testicular development-such as VEGFA, PECAM1, and FZD7-were also identified. We also found that the relative expression of FZD7 was downregulated by the zebularine-induced demethylation of the first exon of FZD7. This regulatory relationship was consistent with the results of the WGBS and RNA-seq analysis. The immature porcine Sertoli cells were transfected with RNAi to mimic the expression patterns of FZD7 during testicular development. The results of the simulation test showed that cell proliferation was significantly impeded and that cell cycle arrest at the G2 phase was caused by the siRNA-induced FZD7 inhibition. We also found that the percentage of early apoptotic Sertoli cells was decreased by transfecting them with the RNAi for FZD7. This indicates that FZD7 is an important factor in linking the proliferation and apoptosis of Sertoli cells. We further demonstrated that Sertoli cells that were treated with the medium collected from apoptotic cells could stimulate proliferation. These findings will contribute to the exploration of the regulatory mechanisms of non-CpG methylation in testicular development and of the relationship between the proliferation and apoptosis of normal somatic cells.


Assuntos
Metilação de DNA , Sulfitos , Animais , Masculino , Proliferação de Células/genética , Ilhas de CpG , Mamíferos , Suínos , Fatores de Troca do Nucleotídeo Guanina
17.
Artigo em Inglês | MEDLINE | ID: mdl-36982037

RESUMO

With the increase of people's living space, global warming caused by the decrease of greening urban spaces and the serious decline of greenspace quality has led to extreme weather events and coastal erosion, which has become the biggest threat to the ocean and has also led to the occurrence of international public safety incidents. Therefore, it is of great practical significance to explore the tense relationship between the current marine environmental protection and global public safety for the development of an international healthy community. Firstly, this paper discusses the influence of implementing the international law of marine environmental protection on global public health after the reduction of green urban space and the decline of green space quality. Secondly, K-means and discrete particle swarm optimization algorithms are introduced and the particle swarm optimization-K-means clustering (PSO-K-means) algorithm is designed to screen and deal with the mapping relationship between latent variables and word sets about the impact of implementing the international marine ecological protection law on the international public health community in network data information. Moreover, the influencing factors are clustered and the scenarios are evaluated. The results show that the clustering analysis of the marine environment can promote the clustering of marine characteristic words. Meanwhile, the PSO-K-means algorithm can effectively cluster vulnerability data information. When the threshold is 0.45, the estimated recall rate of the corresponding model is 88.75%. Therefore, the following measures have been formulated, that is, increasing greening urban spaces and enhancing the quality of green space to enhance the protection of marine environment, which has practical reference value for realizing the protection of marine environment and the sustainable development of marine water resources and land resources.


Assuntos
Conservação dos Recursos Naturais , Saúde Pública , Humanos , Direito Internacional , Desenvolvimento Sustentável , Algoritmos
18.
Neuroimage Clin ; 37: 103341, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36739789

RESUMO

BACKGROUND: Major depressive disorder (MDD) is a severe mental disorder characterized by reduced gray matter volume (GMV). To date, the pathogenesis of MDD remains unclear, but neurotrophic factors play an essential role in the pathophysiological alterations of MDD during disease development. In particular, plasma glial cell line-derived neurotrophic factor (GDNF) has been suggested as a potential biomarker that may be associated with disease activity and neurological progression in MDD. Our study investigated whether plasma GDNF levels in MDD patients and healthy controls (HCs) are correlated with GMV alterations. METHODS: We studied 54 MDD patients and 48 HCs. The effect of different diagnoses on whole-brain GMV was investigated using ANOVA (Analysis of Variance). The threshold of significance was p < 0.05, and Gaussian random-field (GRF) correction for error was used. All analyses were controlled for covariates such as ethnicity, handedness, age, and gender that could affect GMV. RESULT: Compared with the HC group, the GMV in the MDD group was significantly reduced in the right inferior orbitofrontal cortex (OFC), and plasma GDNF levels were significantly higher in the MDD group than in the HC group. In the right inferior OFC, the GDNF levels were positively correlated with GMV reduction in the MDD group, whereas in the HC group, a negative correlation was observed between GDNF levels and GMV reduction. CONCLUSION: Although increased production of GDNF in MDD may help repair neural damage in brain regions associated with brain disease, its repairing effects may be interfered with and hindered by underlying neuroinflammatory processes.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/patologia , Substância Cinzenta/patologia , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Encéfalo , Córtex Pré-Frontal , Imageamento por Ressonância Magnética
19.
ACS Appl Mater Interfaces ; 15(6): 7713-7724, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36728365

RESUMO

Despite hypersialylation of cancer cells together with a significant upregulation of sialyltransferase (ST) activity contributes to the metastatic cascade at multiple levels, there are few dedicated tools to interfere with their expression. Although transition state-based ST inhibitors are well-established, they are not membrane permeable. To tackle this problem, herein, we design and construct long-circulating, self-assembled core-shell nanoscale coordination polymer (NCP) nanoparticles carrying a transition state-based ST inhibitor, which make the inhibitor transmembrane and potently strip diverse sialoglycans from various cancer cells. In the experimental lung metastasis and metastasis prevention models, the nanoparticle device (NCP/STI) significantly inhibits metastases formation without systemic toxicity. This strategy enables ST inhibitors to be applied to cells and animals by providing them with a well-designed nanodelivery system. Our work opens a new avenue to the development of transition state-based ST inhibitors and demonstrates that NCP/STI holds great promise in achieving metastases inhibition for multiple cancers.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Animais , Neoplasias Pulmonares/tratamento farmacológico , Polímeros , Sialiltransferases
20.
Nano Lett ; 23(4): 1280-1288, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36719250

RESUMO

Large-scale screening of molecules in organisms requires high-throughput and cost-effective evaluating tools during preclinical development. Here, a novel in vivo screening strategy combining hierarchically structured biohybrid triboelectric nanogenerators (HB-TENGs) arrays with computational bioinformatics analysis for high-throughput pharmacological evaluation using Caenorhabditis elegans is described. Unlike the traditional methods for behavioral monitoring of the animals, which are laborious and costly, HB-TENGs with micropillars are designed to efficiently convert animals' behaviors into friction deformation and result in a contact-separation motion between two triboelectric layers to generate electrical outputs. The triboelectric signals are recorded and extracted to various bioinformation for each screened compound. Moreover, the information-rich electrical readouts are successfully demonstrated to be sufficient to predict a drug's identity by multiple-Gaussian-kernels-based machine learning methods. This proposed strategy can be readily applied to various fields and is especially useful in in vivo explorations to accelerate the identification of novel therapeutics.


Assuntos
Algoritmos , Caenorhabditis elegans , Animais , Eletricidade , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...