Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med ; 4(7): 457-477.e8, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37172578

RESUMO

BACKGROUND: The advent of chimeric antigen receptor (CAR) T cell therapies has transformed the treatment of hematological malignancies; however, broader therapeutic success of CAR T cells has been limited in solid tumors because of their frequently heterogeneous composition. Stress proteins in the MICA and MICB (MICA/B) family are broadly expressed by tumor cells following DNA damage but are rapidly shed to evade immune detection. METHODS: We have developed a novel CAR targeting the conserved α3 domain of MICA/B (3MICA/B CAR) and incorporated it into a multiplexed-engineered induced pluripotent stem cell (iPSC)-derived natural killer (NK) cell (3MICA/B CAR iNK) that expressed a shedding-resistant form of the CD16 Fc receptor to enable tumor recognition through two major targeting receptors. FINDINGS: We demonstrated that 3MICA/B CAR mitigates MICA/B shedding and inhibition via soluble MICA/B while simultaneously exhibiting antigen-specific anti-tumor reactivity across an expansive library of human cancer cell lines. Pre-clinical assessment of 3MICA/B CAR iNK cells demonstrated potent antigen-specific in vivo cytolytic activity against both solid and hematological xenograft models, which was further enhanced in combination with tumor-targeted therapeutic antibodies that activate the CD16 Fc receptor. CONCLUSIONS: Our work demonstrated 3MICA/B CAR iNK cells to be a promising multi-antigen-targeting cancer immunotherapy approach intended for solid tumors. FUNDING: Funded by Fate Therapeutics and NIH (R01CA238039).


Assuntos
Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Linhagem Celular Tumoral , Imunoterapia Adotiva , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/transplante , Receptores Fc/metabolismo
2.
Cell Rep ; 27(12): 3629-3645.e6, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31216480

RESUMO

CD4+ Foxp3+ T regulatory (Treg) cells are key players in preventing lethal autoimmunity. Tregs undertake differentiation processes and acquire diverse functional properties. However, how Treg's differentiation and functional specification are regulated remains incompletely understood. Here, we report that gradient expression of TCF1 and LEF1 distinguishes Tregs into three distinct subpopulations, particularly highlighting a subset of activated Treg (aTreg) cells. Treg-specific ablation of TCF1 and LEF1 renders the mice susceptible to systemic autoimmunity. TCF1 and LEF1 are dispensable for Treg's suppressive capacity but essential for maintaining a normal aTreg pool and promoting Treg's competitive survival. As a consequence, the development of T follicular regulatory (Tfr) cells, which are a subset of aTreg, is abolished in TCF1/LEF1-conditional knockout mice, leading to unrestrained T follicular helper (Tfh) and germinal center B cell responses. Thus, TCF1 and LEF1 act redundantly to control the maintenance and functional specification of Treg subsets to prevent autoimmunity.


Assuntos
Doenças Autoimunes/prevenção & controle , Autoimunidade/imunologia , Centro Germinativo/imunologia , Fator 1-alfa Nuclear de Hepatócito/fisiologia , Fator 1 de Ligação ao Facilitador Linfoide/fisiologia , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Diferenciação Celular , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Cell Metab ; 29(2): 457-474.e5, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30595478

RESUMO

The nature of obesity-associated islet inflammation and its impact on ß cell abnormalities remains poorly defined. Here, we explore immune cell components of islet inflammation and define their roles in regulating ß cell function and proliferation. Islet inflammation in obese mice is dominated by macrophages. We identify two islet-resident macrophage populations, characterized by their anatomical distributions, distinct phenotypes, and functional properties. Obesity induces the local expansion of resident intra-islet macrophages, independent of recruitment from circulating monocytes. Functionally, intra-islet macrophages impair ß cell function in a cell-cell contact-dependent manner. Increased engulfment of ß cell insulin secretory granules by intra-islet macrophages in obese mice may contribute to restricting insulin secretion. In contrast, both intra- and peri-islet macrophage populations from obese mice promote ß cell proliferation in a PDGFR signaling-dependent manner. Together, these data define distinct roles and mechanisms for islet macrophages in the regulation of islet ß cells.


Assuntos
Inflamação/imunologia , Células Secretoras de Insulina/metabolismo , Macrófagos/imunologia , Obesidade/metabolismo , Receptores do Fator de Crescimento Derivado de Plaquetas/imunologia , Animais , Linhagem Celular , Proliferação de Células , Secreção de Insulina , Células Secretoras de Insulina/patologia , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos
4.
Cell Rep ; 21(7): 1870-1882, 2017 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-29141219

RESUMO

Liver cancer has become the second most deadly malignant disease, with no efficient targeted or immune therapeutic agents available yet. While dissecting the roles of cytoplasmic signaling molecules in hepatocarcinogenesis using an inducible mouse gene targeting system, Mx1-cre, we identified a potent liver tumor-inhibitory effect of synthetic double-stranded RNA (dsRNA), polyinosinic-polycytidylic acid (pIC), an inducer of the Mx1-cre system. Injection of pIC at the pre-cancer stage robustly suppressed liver tumorigenesis either induced by chemical carcinogens or by Pten loss and associated hepatosteatosis. The immunostimulatory dsRNA inhibited liver cancer initiation, apparently by boosting multiple anti-tumor activities of innate immunity, including induction of immunoregulatory cytokines, activation of NK cells and dendritic cells, and reprogramming of macrophage polarization. This study paves the way for the development of preventive and early interfering strategies for liver cancer to reduce the rapidly increasing incidences of liver cancer in an ever-growing population with chronic liver disorders.


Assuntos
Carcinogênese/imunologia , Imunidade Inata , Indutores de Interferon/farmacologia , Neoplasias Hepáticas/imunologia , Poli I-C/farmacologia , Animais , Carcinogênese/efeitos dos fármacos , Células Dendríticas/imunologia , Indutores de Interferon/uso terapêutico , Células Matadoras Naturais/imunologia , Neoplasias Hepáticas/prevenção & controle , Ativação de Macrófagos , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Poli I-C/uso terapêutico , RNA de Cadeia Dupla/farmacologia
5.
Elife ; 62017 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-29171836

RESUMO

How tissue-resident macrophages (TRM) impact adaptive immune responses remains poorly understood. We report novel mechanisms by which TRMs regulate T cell activities at tissue sites. These mechanisms are mediated by the complement receptor of immunoglobulin family (CRIg). Using animal models for autoimmune type 1 diabetes (T1D), we found that CRIg+ TRMs formed a protective barrier surrounding pancreatic islets. Genetic ablation of CRIg exacerbated islet inflammation and local T cell activation. CRIg exhibited a dual function of attenuating early T cell activation and promoting the differentiation of Foxp3+ regulatory (Treg) cells. More importantly, CRIg stabilized the expression of Foxp3 in Treg cells, by enhancing their responsiveness to interleukin-2. The expression of CRIg in TRMs was postnatally regulated by gut microbial signals and metabolites. Thus, environmental cues instruct TRMs to express CRIg, which functions as an immune checkpoint molecule to regulate adaptive immunity and promote immune tolerance.


Assuntos
Tolerância Imunológica , Macrófagos/imunologia , Receptores de Complemento/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Diabetes Mellitus Tipo 1/patologia , Modelos Animais de Doenças , Camundongos Endogâmicos NOD
6.
J Immunol ; 198(10): 3919-3926, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404635

RESUMO

miR-23∼27∼24 was recently implicated in restricting Th2 immunity, as well as the differentiation and function of other effector T cell lineages. Interestingly, miR-24, unlike other family members, actually promotes Th1 and Th17 responses. In this article, we show that miR-24 drives the production of IFN-γ and IL-17 in T cells at least in part through targeting TCF1, a transcription factor known for its role in limiting Th1 and Th17 immunity. Surprisingly, whereas TCF1 was previously shown to promote Th2 responses through inducing GATA3, enforced TCF1 expression in miR-24-overexpressing T cells led to further downregulation of IL-4 and GATA3 expression, suggesting miR-24-mediated inhibition of Th2 immunity cannot be attributed to TCF1 repression by miR-24. Together, our data demonstrate a novel miR-24-TCF1 pathway in controlling effector cytokine production by T cells and further suggest miR-24 could function as a key upstream molecule regulating TCF1-mediated immune responses.


Assuntos
Fator 1-alfa Nuclear de Hepatócito/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Subpopulações de Linfócitos T/imunologia , Animais , Diferenciação Celular , Citocinas/biossíntese , Citocinas/imunologia , Regulação para Baixo , Fator de Transcrição GATA3/biossíntese , Fator 1-alfa Nuclear de Hepatócito/genética , Interferon gama/biossíntese , Interferon gama/imunologia , Interleucina-17/biossíntese , Interleucina-17/imunologia , Interleucina-4/genética , Interleucina-4/imunologia , Ativação Linfocitária , Camundongos , Transdução de Sinais , Subpopulações de Linfócitos T/metabolismo , Células Th1/imunologia , Células Th17/imunologia , Células Th2/imunologia
7.
Nucleic Acids Res ; 43(3): 1537-48, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25593324

RESUMO

Activated naive CD4(+) T cells are highly plastic cells that can differentiate into various T helper (Th) cell fates characterized by the expression of effector cytokines like IFN-γ (Th1), IL-4 (Th2) or IL-17A (Th17). Although previous studies have demonstrated that epigenetic mechanisms including DNA demethylation can stabilize effector cytokine expression, a comprehensive analysis of the changes in the DNA methylation pattern during differentiation of naive T cells into Th cell subsets is lacking. Hence, we here performed a genome-wide methylome analysis of ex vivo isolated naive CD4(+) T cells, Th1 and Th17 cells. We could demonstrate that naive CD4(+) T cells share more demethylated regions with Th17 cells when compared to Th1 cells, and that overall Th17 cells display the highest number of demethylated regions, findings which are in line with the previously reported plasticity of Th17 cells. We could identify seven regions located in Il17a, Zfp362, Ccr6, Acsbg1, Dpp4, Rora and Dclk1 showing pronounced demethylation selectively in ex vivo isolated Th17 cells when compared to other ex vivo isolated Th cell subsets and in vitro generated Th17 cells, suggesting that this unique epigenetic signature allows identifying and functionally characterizing in vivo generated Th17 cells.


Assuntos
Diferenciação Celular/genética , Epigênese Genética , Células Th17/citologia , Animais , Metilação de DNA , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...