Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 23(12): 1618-1628, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32719561

RESUMO

We present CLADES (cell lineage access driven by an edition sequence), a technology for cell lineage studies based on CRISPR-Cas9 techniques. CLADES relies on a system of genetic switches to activate and inactivate reporter genes in a predetermined order. Targeting CLADES to progenitor cells allows the progeny to inherit a sequential cascade of reporters, thereby coupling birth order to reporter expression. This system, which can also be temporally induced by heat shock, enables the temporal resolution of lineage development and can therefore be used to deconstruct an extended cell lineage by tracking the reporters expressed in the progeny. When targeted to the germ line, the same cascade progresses across animal generations, predominantly marking each generation with the corresponding combination of reporters. CLADES therefore offers an innovative strategy for making programmable cascades of genes that can be used for genetic manipulation or to record serial biological events.


Assuntos
Linhagem da Célula/genética , Animais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Reparo do DNA , Drosophila melanogaster , Técnicas de Introdução de Genes , Genes Reporter/genética , Proteínas de Choque Térmico/genética , Células-Tronco Pluripotentes Induzidas , Edição de RNA , Ativação Transcricional , Peixe-Zebra
2.
Elife ; 92020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32255422

RESUMO

Wiring a complex brain requires many neurons with intricate cell specificity, generated by a limited number of neural stem cells. Drosophila central brain lineages are a predetermined series of neurons, born in a specific order. To understand how lineage identity translates to neuron morphology, we mapped 18 Drosophila central brain lineages. While we found large aggregate differences between lineages, we also discovered shared patterns of morphological diversification. Lineage identity plus Notch-mediated sister fate govern primary neuron trajectories, whereas temporal fate diversifies terminal elaborations. Further, morphological neuron types may arise repeatedly, interspersed with other types. Despite the complexity, related lineages produce similar neuron types in comparable temporal patterns. Different stem cells even yield two identical series of dopaminergic neuron types, but with unrelated sister neurons. Together, these phenomena suggest that straightforward rules drive incredible neuronal complexity, and that large changes in morphology can result from relatively simple fating mechanisms.


Assuntos
Encéfalo/fisiologia , Linhagem da Célula , Drosophila melanogaster/citologia , Células-Tronco Neurais/citologia , Neurogênese , Animais , Encéfalo/citologia , Drosophila melanogaster/genética , Larva , Neurônios/citologia
3.
Biol Open ; 9(5)2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32205310

RESUMO

During Drosophila and vertebrate brain development, the conserved transcription factor Prospero/Prox1 is an important regulator of the transition between proliferation and differentiation. Prospero level is low in neural stem cells and their immediate progeny, but is upregulated in larval neurons and it is unknown how this process is controlled. Here, we use single molecule fluorescent in situ hybridisation to show that larval neurons selectively transcribe a long prospero mRNA isoform containing a 15 kb 3' untranslated region, which is bound in the brain by the conserved RNA-binding protein Syncrip/hnRNPQ. Syncrip binding increases the stability of the long prospero mRNA isoform, which allows an upregulation of Prospero protein production. Adult flies selectively lacking the long prospero isoform show abnormal behaviour that could result from impaired locomotor or neurological activity. Our findings highlight a regulatory strategy involving alternative polyadenylation followed by differential post-transcriptional regulation.This article has an associated First Person interview with the first author of the paper.


Assuntos
Proteínas de Drosophila/genética , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Proteínas Nucleares/genética , Poliadenilação , RNA Mensageiro/genética , Fatores de Transcrição/genética , Regiões 3' não Traduzidas , Animais , Proteínas de Drosophila/metabolismo , Imuno-Histoquímica , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Especificidade de Órgãos/genética , Estabilidade de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
4.
Elife ; 82019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31545163

RESUMO

Temporal patterning is a seminal method of expanding neuronal diversity. Here we unravel a mechanism decoding neural stem cell temporal gene expression and transforming it into discrete neuronal fates. This mechanism is characterized by hierarchical gene expression. First, Drosophila neuroblasts express opposing temporal gradients of RNA-binding proteins, Imp and Syp. These proteins promote or inhibit chinmo translation, yielding a descending neuronal gradient. Together, first and second-layer temporal factors define a temporal expression window of BTB-zinc finger nuclear protein, Mamo. The precise temporal induction of Mamo is achieved via both transcriptional and post-transcriptional regulation. Finally, Mamo is essential for the temporally defined, terminal identity of α'/ß' mushroom body neurons and identity maintenance. We describe a straightforward paradigm of temporal fate specification where diverse neuronal fates are defined via integrating multiple layers of gene regulation. The neurodevelopmental roles of orthologous/related mammalian genes suggest a fundamental conservation of this mechanism in brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Diferenciação Celular , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Células-Tronco Neurais/fisiologia , Neurônios/fisiologia , Fatores de Transcrição/metabolismo , Animais , Drosophila , Perfilação da Expressão Gênica
5.
Neuron ; 104(2): 227-238.e7, 2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31395429

RESUMO

Gaining independent genetic access to discrete cell types is critical to interrogate their biological functions as well as to deliver precise gene therapy. Transcriptomics has allowed us to profile cell populations with extraordinary precision, revealing that cell types are typically defined by a unique combination of genetic markers. Given the lack of adequate tools to target cell types based on multiple markers, most cell types remain inaccessible to genetic manipulation. Here we present CaSSA, a platform to create unlimited genetic switches based on CRISPR/Cas9 (Ca) and the DNA repair mechanism known as single-strand annealing (SSA). CaSSA allows engineering of independent genetic switches, each responding to a specific gRNA. Expressing multiple gRNAs in specific patterns enables multiplex cell-type-specific manipulations and combinatorial genetic targeting. CaSSA is a new genetic tool that conceptually works as an unlimited number of recombinases and will facilitate genetic access to cell types in diverse organisms.


Assuntos
Sistemas CRISPR-Cas , Reparo do DNA , Marcação de Genes/métodos , Animais , Drosophila , Técnicas Genéticas , RNA Guia de Cinetoplastídeos , Recombinases/genética , Peixe-Zebra
6.
Development ; 144(19): 3454-3464, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28851709

RESUMO

The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a 'decommissioning' phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex, causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than in other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together, our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Células-Tronco Neurais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Animais Geneticamente Modificados , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Larva/metabolismo , Complexo Mediador/metabolismo , Modelos Biológicos , Corpos Pedunculados/citologia , Corpos Pedunculados/metabolismo , Células-Tronco Neurais/citologia , Ligação Proteica , Pupa/metabolismo , Proteínas de Ligação a RNA/genética
7.
Curr Biol ; 27(9): 1303-1313, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28434858

RESUMO

Building a sizable, complex brain requires both cellular expansion and diversification. One mechanism to achieve these goals is production of multiple transiently amplifying intermediate neural progenitors (INPs) from a single neural stem cell. Like mammalian neural stem cells, Drosophila type II neuroblasts utilize INPs to produce neurons and glia. Within a given lineage, the consecutively born INPs produce morphologically distinct progeny, presumably due to differential inheritance of temporal factors. To uncover the underlying temporal fating mechanisms, we profiled type II neuroblasts' transcriptome across time. Our results reveal opposing temporal gradients of Imp and Syp RNA-binding proteins (descending and ascending, respectively). Maintaining high Imp throughout serial INP production expands the number of neurons and glia with early temporal fate at the expense of cells with late fate. Conversely, precocious upregulation of Syp reduces the number of cells with early fate. Furthermore, we reveal that the transcription factor Seven-up initiates progression of the Imp/Syp gradients. Interestingly, neuroblasts that maintain initial Imp/Syp levels can still yield progeny with a small range of early fates. We therefore propose that the Seven-up-initiated Imp/Syp gradients create coarse temporal windows within type II neuroblasts to pattern INPs, which subsequently undergo fine-tuned subtemporal patterning.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Células-Tronco Neurais/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores de Esteroides/metabolismo , Animais , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Neurogênese , Neurônios/citologia , Neurônios/metabolismo , Fator de Células-Tronco/metabolismo
8.
Development ; 143(3): 411-21, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26700685

RESUMO

A brain consists of numerous distinct neurons arising from a limited number of progenitors, called neuroblasts in Drosophila. Each neuroblast produces a specific neuronal lineage. To unravel the transcriptional networks that underlie the development of distinct neuroblast lineages, we marked and isolated lineage-specific neuroblasts for RNA sequencing. We labeled particular neuroblasts throughout neurogenesis by activating a conditional neuroblast driver in specific lineages using various intersection strategies. The targeted neuroblasts were efficiently recovered using a custom-built device for robotic single-cell picking. Transcriptome analysis of mushroom body, antennal lobe and type II neuroblasts compared with non-selective neuroblasts, neurons and glia revealed a rich repertoire of transcription factors expressed among neuroblasts in diverse patterns. Besides transcription factors that are likely to be pan-neuroblast, many transcription factors exist that are selectively enriched or repressed in certain neuroblasts. The unique combinations of transcription factors present in different neuroblasts may govern the diverse lineage-specific neuron fates.


Assuntos
Linhagem da Célula/genética , Drosophila melanogaster/genética , Marcação de Genes , Neurônios/citologia , Robótica , Transcriptoma/genética , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Regulação da Expressão Gênica no Desenvolvimento , Análise de Sequência de RNA , Análise de Célula Única , Fatores de Transcrição/metabolismo
9.
Science ; 350(6258): 317-20, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472907

RESUMO

Neural stem cells show age-dependent developmental potentials, as evidenced by their production of distinct neuron types at different developmental times. Drosophila neuroblasts produce long, stereotyped lineages of neurons. We searched for factors that could regulate neural temporal fate by RNA-sequencing lineage-specific neuroblasts at various developmental times. We found that two RNA-binding proteins, IGF-II mRNA-binding protein (Imp) and Syncrip (Syp), display opposing high-to-low and low-to-high temporal gradients with lineage-specific temporal dynamics. Imp and Syp promote early and late fates, respectively, in both a slowly progressing and a rapidly changing lineage. Imp and Syp control neuronal fates in the mushroom body lineages by regulating the temporal transcription factor Chinmo translation. Together, the opposing Imp/Syp gradients encode stem cell age, specifying multiple cell fates within a lineage.


Assuntos
Linhagem da Célula , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Neurônios/citologia , Proteínas de Ligação a RNA/fisiologia , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Corpos Pedunculados/citologia , Corpos Pedunculados/crescimento & desenvolvimento , Proteínas do Tecido Nervoso/metabolismo , Neurogênese/genética , Proteínas de Ligação a RNA/genética , Análise de Sequência de RNA
10.
Nat Neurosci ; 17(4): 631-7, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24561995

RESUMO

The Drosophila cerebrum originates from about 100 neuroblasts per hemisphere, with each neuroblast producing a characteristic set of neurons. Neurons from a neuroblast are often so diverse that many neuron types remain unexplored. We developed new genetic tools that target neuroblasts and their diverse descendants, increasing our ability to study fly brain structure and development. Common enhancer-based drivers label neurons on the basis of terminal identities rather than origins, which provides limited labeling in the heterogeneous neuronal lineages. We successfully converted conventional drivers that are temporarily expressed in neuroblasts, into drivers expressed in all subsequent neuroblast progeny. One technique involves immortalizing GAL4 expression in neuroblasts and their descendants. Another depends on loss of the GAL4 repressor, GAL80, from neuroblasts during early neurogenesis. Furthermore, we expanded the diversity of MARCM-based reagents and established another site-specific mitotic recombination system. Our transgenic tools can be combined to map individual neurons in specific lineages of various genotypes.


Assuntos
Linhagem da Célula , Cérebro/citologia , Proteínas de Drosophila , Drosophila/citologia , Técnicas Genéticas , Células-Tronco Neurais/citologia , Animais , Linhagem da Célula/fisiologia , Cérebro/fisiologia , Drosophila/fisiologia , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Receptores Notch/biossíntese , Receptores Notch/genética , Recombinação Genética , Transgenes
11.
Curr Biol ; 23(19): 1908-13, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24055154

RESUMO

An often-overlooked aspect of neural plasticity is the plasticity of neuronal composition, in which the numbers of neurons of particular classes are altered in response to environment and experience. The Drosophila brain features several well-characterized lineages in which a single neuroblast gives rise to multiple neuronal classes in a stereotyped sequence during development. We find that in the intrinsic mushroom body neuron lineage, the numbers for each class are highly plastic, depending on the timing of temporal fate transitions and the rate of neuroblast proliferation. For example, mushroom body neuroblast cycling can continue under starvation conditions, uncoupled from temporal fate transitions that depend on extrinsic cues reflecting organismal growth and development. In contrast, the proliferation rates of antennal lobe lineages are closely associated with organismal development, and their temporal fate changes appear to be cell cycle-dependent, such that the same numbers and types of uniglomerular projection neurons innervate the antennal lobe following various perturbations. We propose that this surprising difference in plasticity for these brain lineages is adaptive, given their respective roles as parallel processors versus discrete carriers of olfactory information.


Assuntos
Encéfalo/fisiologia , Drosophila melanogaster/fisiologia , Corpos Pedunculados/metabolismo , Plasticidade Neuronal , Condutos Olfatórios/metabolismo , Animais , Antenas de Artrópodes/citologia , Antenas de Artrópodes/metabolismo , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Proteínas de Drosophila/biossíntese , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de Fluorescência Verde/genética , Insulina/metabolismo , Larva , Proteínas do Tecido Nervoso/genética , Condutos Olfatórios/citologia , Fatores do Domínio POU/genética , Receptores Proteína Tirosina Quinases/biossíntese , Receptores Proteína Tirosina Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Inanição , Fatores de Transcrição/genética
12.
Exp Cell Res ; 314(17): 3209-20, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18761010

RESUMO

Spindle assembly is essential for the equal distribution of genetic material to the daughter cells during mitosis. The process of spindle assembly is complicated and involves multiple levels of molecular regulation. It is generally accepted that mitotic spindles are emanated from the centrosomes and are assembled in the vicinity of chromosomes. However, the molecular mechanism involved in the spindle assembly during mitosis remains unclear. In this study, we have provided several lines of evidence to show that Drosophila Mars is required for the assembly and stabilization of kinetochore microtubules. In an immunocytochemical study, we show that Mars is mainly localized on the kinetochore microtubules during mitosis. Using RNA interference to deplete the Mars expression in Drosophila S2 cells resulted in the malformation of mitotic spindle that mainly lacked the kinetochore microtubules. The spindle defect resulted in mitotic delays by increasing the percentage of uncongressed chromosomes both in vitro and in vivo. In summary, this study has extended our previous study of Mars in cell cycle regulation and provided further evidence showing that Mars is required for the assembly of kinetochore microtubules.


Assuntos
Drosophila melanogaster/fisiologia , Cinetocoros/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Animais , Animais Geneticamente Modificados , Centrossomo/metabolismo , Cromossomos/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Cinetocoros/ultraestrutura , Larva/anatomia & histologia , Larva/metabolismo , Microtúbulos/ultraestrutura , Proteínas do Tecido Nervoso/genética , Interferência de RNA , RNA de Cadeia Dupla/metabolismo , Proteínas Associadas SAP90-PSD95 , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura , Tubulina (Proteína)/metabolismo , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
13.
Exp Cell Res ; 307(1): 183-93, 2005 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-15922738

RESUMO

Human hepatoma up-regulated protein (HURP), a cell-cycle regulator, is found consistently overexpressed in human hepatocellular carcinoma. At present, the function of HURP in cell-cycle regulation and carcinogenesis remains unclear. In database mining, we have identified a mars gene in Drosophila, which encodes a protein with a high similarity to HURP in its guanylate kinase-associated protein (GKAP) motif. Overexpression but not down-regulation of mars in eye discs resulted in a higher mitotic index along with a high frequency of mitotic defects, including misalignment of chromosomes and mispositioned centrosomes, at the second mitotic wave (SMW). The consequence of mitotic defects impairs cell-cycle progression, and causes cell death posterior to the furrow. Immunocytochemical studies also have indicated that the expression of Mars is cell cycle regulated, and that its subcellular localization is dynamically changed during cell-cycle progression. Furthermore, we also demonstrated that the first 198 amino acids at the N-terminus of Mars are responsible for the degradation of Mars in non-mitotic cells. Together, we report the use Drosophila eye as a model system to characterize the function of the mars gene in cell-cycle regulation.


Assuntos
Ciclo Celular , Drosophila/genética , Olho/metabolismo , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Apoptose , Western Blotting , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Centrossomo/fisiologia , Regulação para Baixo , Drosophila/embriologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Olho/citologia , Olho/embriologia , Olho/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Genes , Genes de Insetos , Imuno-Histoquímica , Mitose/fisiologia , Dados de Sequência Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína , Proteínas Associadas SAP90-PSD95 , Homologia de Sequência de Aminoácidos , Fuso Acromático/fisiologia , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...