Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Circ Res ; 133(12): 989-1002, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37955115

RESUMO

BACKGROUND: Heart failure, characterized by cardiac remodeling, is associated with abnormal epigenetic processes and aberrant gene expression. Here, we aimed to elucidate the effects and mechanisms of NAT10 (N-acetyltransferase 10)-mediated N4-acetylcytidine (ac4C) acetylation during cardiac remodeling. METHODS: NAT10 and ac4C expression were detected in both human and mouse subjects with cardiac remodeling through multiple assays. Subsequently, acetylated RNA immunoprecipitation and sequencing, thiol-linked alkylation for the metabolic sequencing of RNA (SLAM-seq), and ribosome sequencing (Ribo-seq) were employed to elucidate the role of ac4C-modified posttranscriptional regulation in cardiac remodeling. Additionally, functional experiments involving the overexpression or knockdown of NAT10 were conducted in mice models challenged with Ang II (angiotensin II) and transverse aortic constriction. RESULTS: NAT10 expression and RNA ac4C levels were increased in in vitro and in vivo cardiac remodeling models, as well as in patients with cardiac hypertrophy. Silencing and inhibiting NAT10 attenuated Ang II-induced cardiomyocyte hypertrophy and cardiofibroblast activation. Next-generation sequencing revealed ac4C changes in both mice and humans with cardiac hypertrophy were associated with changes in global mRNA abundance, stability, and translation efficiency. Mechanistically, NAT10 could enhance the stability and translation efficiency of CD47 and ROCK2 transcripts by upregulating their mRNA ac4C modification, thereby resulting in an increase in their protein expression during cardiac remodeling. Furthermore, the administration of Remodelin, a NAT10 inhibitor, has been shown to prevent cardiac functional impairments in mice subjected to transverse aortic constriction by suppressing cardiac fibrosis, hypertrophy, and inflammatory responses, while also regulating the expression levels of CD47 and ROCK2 (Rho associated coiled-coil containing protein kinase 2). CONCLUSIONS: Therefore, our data suggest that modulating epitranscriptomic processes, such as ac4C acetylation through NAT10, may be a promising therapeutic target against cardiac remodeling.


Assuntos
Antígeno CD47 , Remodelação Ventricular , Humanos , Camundongos , Animais , Antígeno CD47/genética , Remodelação Ventricular/fisiologia , RNA , Cardiomegalia/metabolismo , RNA Mensageiro/genética , Perfilação da Expressão Gênica , Acetiltransferases N-Terminal
3.
Clin Epigenetics ; 15(1): 184, 2023 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-38007493

RESUMO

BACKGROUND: Cardiovascular disease (CVD) remains a major health killer worldwide, and the role of epigenetic regulation in CVD has been widely studied in recent decades. Herein, we perform a bibliometric study to decipher how research topics in this field have evolved during the past 2 decades. RESULTS: Publications on epigenetics in CVD produced during the period 2000-2022 were retrieved from the Web of Science Core Collection (WoSCC). We utilized Bibliometrix to build a science map of the publications and applied VOSviewer and CiteSpace to assess co-authorship, co-citation, co-occurrence, and bibliographic coupling. In total, 27,762 publications were included for bibliometric analysis. The yearly amount of publications experienced exponential growth. The top 3 most influential countries were China, the United States, and Germany, while the most cited institutions were Nanjing Medical University, Harbin Medical University, and Shanghai Jiao Tong University. Four major research trends were identified: (a) epigenetic mechanisms of CVD; (b) epigenetics-based therapies for CVD; (c) epigenetic profiles of specific CVDs; and (d) epigenetic biomarkers for CVD diagnosis/prediction. The latest and most important research topics, including "nlrp3 inflammasome", "myocardial injury", and "reperfusion injury", were determined by detecting citation bursts of co-occurring keywords. The most cited reference was a review of the current knowledge about how miRNAs recognize target genes and modulate their expression and function. CONCLUSIONS: The number and impact of global publications on epigenetics in CVD have expanded rapidly over time. Our findings may provide insights into the epigenetic basis of CVD pathogenesis, diagnosis, and treatment.


Assuntos
Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Epigênese Genética , China , Metilação de DNA , Bibliometria
4.
Molecules ; 28(20)2023 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-37894691

RESUMO

Wastewater contaminated with antibiotics is a major environmental challenge. The oxidation process is one of the most common and effective ways to remove these pollutants. The use of metal-free, green, and inexpensive catalysts can be a good alternative to metal-containing photocatalysts in environmental applications. We developed here the green synthesis of bio-graphenes by using natural precursors (Xanthan, Chitosan, Boswellia, Tragacanth). The use of these precursors can act as templates to create 3D doped graphene structures with special morphology. Also, this method is a simple method for in situ synthesis of doped graphenes. The elements present in the natural biopolymers (N) and other elements in the natural composition (P, S) are easily placed in the graphene structure and improve the catalytic activity due to the structural defects, surface charges, increased electron transfers, and high absorption. The results have shown that the hollow cubic Chitosan-derived graphene has shown the best performance due to the doping of N, S, and P. The Boswellia-derived graphene shows the highest surface area but a lower catalytic performance, which indicates the more effective role of doping in the catalytic activity. In this mechanism, O2 dissolved in water absorbs onto the positively charged C adjacent to N dopants to create oxygenated radicals, which enables the degradation of antibiotic molecules. Light irradiation increases the amount of radicals and rate of antibiotic removal.


Assuntos
Quitosana , Grafite , Grafite/química , Antibacterianos , Metais , Oxirredução
5.
Cell Commun Signal ; 21(1): 181, 2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488545

RESUMO

Alamandine (Ala), a ligand of Mas-related G protein-coupled receptor, member D (MrgD), alleviates angiotensin II (AngII)-induced cardiac hypertrophy. However, the specific physiological and pathological role of MrgD is not yet elucidated. Here, we found that MrgD expression increased under various pathological conditions. Then, MrgD knockdown prevented AngII-induced cardiac hypertrophy and fibrosis via inactivating Gαi-mediacted downstream signaling pathways, including the phosphorylation of p38 (p-P38), while MrgD overexpression induced pathological cardiac remodeling. Next, Ala, like silencing MrgD, exerted its cardioprotective effects by inhibiting Ang II-induced nuclear import of MrgD. MrgD interacted with p-P38 and promoted its entry into the nucleus under Ang II stimulation. Our results indicated that Ala was a blocking ligand of MrgD that inhibited downstream signaling pathway, which unveiled the promising cardioprotective effect of silencing MrgD expression on alleviating cardiac remodeling. Video Abstract.


Assuntos
Receptores Acoplados a Proteínas G , Remodelação Ventricular , Humanos , Ligantes , Transporte Ativo do Núcleo Celular , Receptores Acoplados a Proteínas G/metabolismo , Angiotensina II/farmacologia , Cardiomegalia/patologia
6.
Front Cardiovasc Med ; 10: 1182606, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342441

RESUMO

Background: Cardiac fibrosis is a hallmark of various end-stage cardiovascular diseases (CVDs) and a potent contributor to adverse cardiovascular events. During the past decades, extensive publications on this topic have emerged worldwide, while a bibliometric analysis of the current status and research trends is still lacking. Methods: We retrieved relevant 13,446 articles on cardiac fibrosis published between 1989 and 2022 from the Web of Science Core Collection (WoSCC). Bibliometrix was used for science mapping of the literature, while VOSviewer and CiteSpace were applied to visualize co-authorship, co-citation, co-occurrence, and bibliographic coupling networks. Results: We identified four major research trends: (1) pathophysiological mechanisms; (2) treatment strategies; (3) cardiac fibrosis and related CVDs; (4) early diagnostic methods. The most recent and important research themes such as left ventricular dysfunction, transgenic mice, and matrix metalloproteinase were generated by burst analysis of keywords. The reference with the most citations was a contemporary review summarizing the role of cardiac fibroblasts and fibrogenic molecules in promoting fibrogenesis following myocardial injury. The top 3 most influential countries were the United States, China, and Germany, while the most cited institution was Shanghai Jiao Tong University, followed by Nanjing Medical University and Capital Medical University. Conclusions: The number and impact of global publications on cardiac fibrosis has expanded rapidly over the past 30 years. These results are in favor of paving the way for future research on the pathogenesis, diagnosis, and treatment of cardiac fibrosis.

7.
Huan Jing Ke Xue ; 44(5): 2502-2517, 2023 May 08.
Artigo em Chinês | MEDLINE | ID: mdl-37177925

RESUMO

According to the river environmental quality, pollutant emission, and investment in environmental pollution control from 2002-2020, the change law and driving factors of river environmental quality in China were evaluated using canonical correlation analysis and the Spearman correlation coefficient to analyze the influence between environmental and pollutant emission/investment in environmental pollution control. The results indicated that the river environmental quality was improved significantly based on the proportion of Class Ⅰ-Ⅲ increasing from 29.1% to 87.4% and the proportion of inferior Class Ⅴ decreasing from 40.9% to 0.2% from 2002-2020. The emission of wastewater and domestic wastewater increased from 4.395×1010 tons and 2.323×1010 tons to 8.491×1010 tons and 6.598×1010 tons, respectively. However, emissions of industrial wastewater decreased from 2.072×1010 tons to 1.680×1010 tons. Investment in environmental pollution control increased from 110.66 billion yuan to 1063.89 billion yuan. The proportion of Class Ⅰ-Ⅲ in seven major river basins, river basins in Zhejiang and Fujian, southwest river basins, and northwest river basins showed a negative correlation for industrial pollutant emissions and a positive correlation for investment in environmental pollution control. The primary measure for the seven major river basins, river basins in Zhejiang and Fujian, and northwest river basins cut down the industrial pollutant emissions, in the order of COD>NH4+-N>total wastewater. The primary measure for southwest river basins increased the investment in environmental pollution control, in the order of industrial investment in environmental pollution control>urban environmental infrastructure construction investment and environmental protection investment in construction projects. These results can provide theoretical and policy suggestions for the improvement of river environmental quality during the "14th Five-Year Plan" period.

8.
J Clin Hypertens (Greenwich) ; 25(6): 545-554, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37196052

RESUMO

The current hypertension guideline emphasizes combination therapy, especially single-pill combination therapy (SPC). However, few studies compared the prevalence and factors associated with initial therapy choice across heterogeneous age groups in a current population. First, the authors consecutively identified 964 treatment naïve hypertensive patients in a large academic hospital from 01/31/2019 to 01/31/2020. All patients were grouped into (1) young aged, age < 55; (2) middle-aged, 55≤age < 65; and (3) older aged, age ≥65. The multivariable regression model examined the factors associated with the combination therapy by age group. Overall, 80 (8.3%) were young, 191 (19.8%) were middle, and 693 (71.9%) were older aged. Compared with older age, younger patients were more likely to be male, highly educated, regularly exercised, have metabolic syndrome, and less likely to have cardiovascular-related comorbidities, with a lower systolic but higher diastolic pressure. Only one in five patients used SPC, and the prevalence decreased with age. Besides hypertension grade, young patients without catheterization or echo test were less likely to receive multiple therapies, while older patients who were male with lower weight and lower risk levels were less likely to receive multiple therapies. In conclusion, combination therapy, especially SPC, was underused in the targeted hypertensive population. Our contemporary population study showed that young patients (<55) without a history of catheterization or echo examination and male older-aged (≥65) patients with low-risk classification were the population most likely to be neglected. Such information can help triage medical care resources in improving SPC use.


Assuntos
Hipertensão , Pessoa de Meia-Idade , Humanos , Masculino , Idoso , Feminino , Hipertensão/tratamento farmacológico , Hipertensão/epidemiologia , Hipertensão/diagnóstico , Anti-Hipertensivos/efeitos adversos , Combinação de Medicamentos , Terapia Combinada , Fatores Etários , Pressão Sanguínea
9.
Ecotoxicol Environ Saf ; 251: 114524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36634481

RESUMO

MIL-101(Fe)-based catalysts have been widely used for degradation of organic pollutants based on peroxymonosulfate (PMS) activation. Hence, a facile calcination and hydrothermal method was used in this study to prepare a MIL-101(Fe)/g-C3N4 composite catalyst with high activity and high stability for PMS activation to degrade tetracycline hydrochloride (TC) under visible-light irradiation. We clearly elucidated the mechanism involved in the MIL-101(Fe)/g-C3N4 photo Fenton-catalyzed PMS activation process by separating the PMS activation and pollutant oxidation processes. The synergetic effects of MIL-101(Fe) and g-C3N4 involved MIL-101(Fe) acting as an electron shuttle mediating electron transfer from the organic substrate to PMS, accompanied by redox cycling of the surface Fe(II)/Fe(III). Multiple experimental results indicated that PMS was bound to the surface of MIL-101(Fe)/g-C3N4 during visible irradiation and generation of sulfate radicals (SO4•-), hydroxyl radicals (•OH) and superoxide anion free radicals (•O2-) for the radical pathway and singlet oxygen (1O2) and holes (h+) for the nonradical pathway. The major degradation pathways for TC can be described as demethylation, deamination, deamidation and carbonylation. This work provides valuable information and advances the fundamental understanding needed for design and syntheses of metal-free conjugated polymers modified by metal-organic frameworks for heterogeneous photo-Fenton reactions.


Assuntos
Estruturas Metalorgânicas , Tetraciclina , Compostos Férricos , Peróxidos , Oxirredução
10.
Molecules ; 27(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36557777

RESUMO

In order to improve the catalytic activity of cobalt molybdate (CoMoO4), a PDS-activated and UV-vis assisted system was constructed. CoMoO4 was prepared by coprecipitation and calcination, and characterized by XRD, FTIR, Raman, SEM, TEM, XPS, TGA Zeta potential, BET, and UV-Vis DRS. The results showed that the morphology of the CoMoO4 nanolumps consisted of stacked nanosheets. XRD indicated the monoclinic structures with C2/m (C32h, #12) space group, which belong to α-CoMoO4, and both Co2+ and Mo6+ ions occupy distorted octahedral sites. The pH of the isoelectric point (pHIEP) of CMO-8 at pH = 4.88 and the band gap of CoMoO4 was 1.92 eV. The catalytic activity of CoMoO4 was evaluated by photo-Fenton degradation of Congo red (CR). The catalytic performance was affected by calcination temperature, catalyst dosage, PDS dosage, and pH. Under the best conditions (0.8 g/L CMO-8, PDS 1 mL), the degradation efficiency of CR was 96.972%. The excellent catalytic activity of CoMoO4 was attributed to the synergistic effect of photo catalysis and CoMoO4-activated PDS degradation. The capture experiments and the ESR showed that superoxide radical (·O2-), singlet oxygen (1O2), hole (h+), sulfate (SO4-·), and hydroxyl (·OH-) were the main free radicals leading to the degradation of CR. The results can provide valuable information and support for the design and application of high-efficiency transition metal oxide catalysts.


Assuntos
Vermelho Congo , Água , Peróxido de Hidrogênio/química , Óxidos/química , Cobalto/química , Catálise
11.
Front Cardiovasc Med ; 9: 952949, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36093141

RESUMO

Pathological myocardial remodeling was still one of the leading causes of death worldwide with an unmet therapeutic need. A growing number of researchers have addressed the role of epigenome changes in cardiovascular diseases, paving the way for the clinical application of novel cardiovascular-related epigenetic targets in the future. In this review, we summarized the emerged advances of epigenetic regulation, including DNA methylation, Histone posttranslational modification, Adenosine disodium triphosphate (ATP)-dependent chromatin remodeling, Non-coding RNA, and RNA modification, in pathological myocardial remodeling. Also, we provided an overview of the mechanisms that potentially involve the participation of these epigenetic regulation.

12.
Cell Cycle ; 21(19): 2091-2108, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35695424

RESUMO

Retinopathy of prematurity (ROP), which is characterized by retinal neovascularization (RNV), is a major cause of neonatal blindness. The primary treatment for ROP is anti-vascular endothelial growth factor (VEGF) therapy, which is costly and can rapidly lead to desensitization. Celastrol, a bioactive compound extracted from Tripterygium wilfordii Hook F. ("Thunder of God Vine"), has been shown to exert anticancer and anti-inflammatory effects. However, whether celastrol has antiangiogenic activity and can suppress inflammation to inhibit ROP progression is unclear. This was investigated in the present study in vitro as well as in vivo using a mouse model of oxygen-induced retinopathy (OIR). Our results showed that celastrol treatment reduced neovascular and avascular areas in the retina and inhibited microglia activation and inflammation in OIR mice. Celastrol also inhibited proliferation, migration, and tube formation in cultured human retinal microvascular endothelial cells, and reversed the activation of the microRNA (miR)-17-5p/hypoxia-inducible factor (HIF)-1α/VEGF pathway in the retina of OIR mice. These results indicate that celastrol alleviates pathologic RNV in the retina by protecting neuroglia and suppressing inflammation via inhibition of miR-17-5p/HIF-1α/VEGF signaling, and thus has therapeutic potential for the prevention and treatment of ROP.Abbreviations: BSA, bovine serum albumin; COX2, cyclooxygenase 2; ECM, endothelial cell medium; FBS, fetal bovine serum; HDAC, histone deacetylase; HIF-1, hypoxia-inducible factor 1; HRMEC, human retinal microvascular endothelial cell; Hsp70, heat shock protein; IB4, isolectin B4; ICAM-1, intercellular adhesion molecule 1; IL-1ß/6, interleukin 1 beta/6; MAPK, mitogen-activated protein kinase; MCP-1, monocyte chemoattractant protein 1; miRNA, microRNA; MMP, matrix metalloproteinase; mTOR, mammalian target of rapamycin; NF-κB, nuclear factor-kappa B; OIR, oxygen-induced retinopathy; PBS, phosphate-buffered saline; PCNA, proliferating cell nuclear antigen; PI3K, phosphatidylinositol-3-kinase; qRT-PCR, quantitative real-time PCR; RNV, retinal neovascularization; ROP, retinopathy of prematurity; RTCA, real-time cell analyzer; RVO, retinal vaso-obliteration; TNF-α, tumor necrosis factor alpha; VCAM-1, vascular cell adhesion molecule 1; VEGF, vascular endothelial growth factor.


Assuntos
MicroRNAs , Neovascularização Retiniana , Retinopatia da Prematuridade , Animais , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Recém-Nascido , Inflamação , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Neovascularização Patológica/metabolismo , Triterpenos Pentacíclicos , Neovascularização Retiniana/tratamento farmacológico , Retinopatia da Prematuridade/tratamento farmacológico , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
Nat Commun ; 13(1): 3130, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35668093

RESUMO

Hypertension is a pathological condition of persistent high blood pressure (BP) of which the underlying neural mechanisms remain obscure. Here, we show that the afferent nerves in perirenal adipose tissue (PRAT) contribute to maintain pathological high BP, without affecting physiological BP. Bilateral PRAT ablation or denervation leads to a long-term reduction of high BP in spontaneous hypertensive rats (SHR), but has no effect on normal BP in control rats. Further, gain- and loss-of-function and neuron transcriptomics studies show that augmented activities and remodeling of L1-L2 dorsal root ganglia neurons are responsible for hypertension in SHR. Moreover, we went on to show that calcitonin gene-related peptide (CGRP) is a key endogenous suppressor of hypertension that is sequestered by pro-hypertensive PRAT in SHRs. Taken together, we identify PRAT afferent nerves as a pro-hypertensive node that sustains high BP via suppressing CGRP, thereby providing a therapeutic target to tackle primary hypertension.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina , Hipertensão , Tecido Adiposo , Animais , Pressão Sanguínea/fisiologia , Gânglios Espinais , Hipertensão/tratamento farmacológico , Ratos , Ratos Endogâmicos SHR
14.
Molecules ; 28(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36615527

RESUMO

The environmentally benign Fe2(MoO4)3 plays a crucial role in the transformation of organic contaminants, either through catalytically decomposing oxidants or through directly oxidizing the target pollutants. Because of their dual roles and the complex surface chemical reactions, the mechanism involved in Fe2(MoO4)3-catalyzed PDS activation processes remains obscure. In this study, Fe2(MoO4)3 was prepared via the hydrothermal and calcine method, and photoFenton degradation of methyl orange (MO) was used to evaluate the catalytic performance of Fe2(MoO4)3. Fe2(MoO4)3 catalysts with abundant surface oxygen vacancies were used to construct a synergistic system involving a photocatalyst and PDS activation. The oxygen vacancies and Fe2+/Fe3+ shuttle played key roles in the novel pathways for generation of •O2-, h+, and 1O2 in the UV-Vis + PDS + FMO-6 photoFenton system. This study advances the fundamental understanding of the underlying mechanism involved in the transition metal oxide-catalyzed PDS activation processes.


Assuntos
Óxidos , Oxigênio , Catálise
15.
J Zhejiang Univ Sci B ; 22(10): 818-838, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34636186

RESUMO

OBJECTIVES: Cardiac hypertrophy and fibrosis are major pathological manifestations observed in left ventricular remodeling induced by angiotensin II (AngII). Low-intensity pulsed ultrasound (LIPUS) has been reported to ameliorate cardiac dysfunction and myocardial fibrosis in myocardial infarction (MI) through mechano-transduction and its downstream pathways. In this study, we aimed to investigate whether LIPUS could exert a protective effect by ameliorating AngII-induced cardiac hypertrophy and fibrosis and if so, to further elucidate the underlying molecular mechanisms. METHODS: We used AngII to mimic animal and cell culture models of cardiac hypertrophy and fibrosis. LIPUS irradiation was applied in vivo for 20 min every 2 d from one week before mini-pump implantation to four weeks after mini-pump implantation, and in vitro for 20 min on each of two occasions 6 h apart. Cardiac hypertrophy and fibrosis levels were then evaluated by echocardiographic, histopathological, and molecular biological methods. RESULTS: Our results showed that LIPUS could ameliorate left ventricular remodeling in vivo and cardiac fibrosis in vitro by reducing AngII-induced release of inflammatory cytokines, but the protective effects on cardiac hypertrophy were limited in vitro. Given that LIPUS increased the expression of caveolin-1 in response to mechanical stimulation, we inhibited caveolin-1 activity with pyrazolopyrimidine 2 (pp2) in vivo and in vitro. LIPUS-induced downregulation of inflammation was reversed and the anti-fibrotic effects of LIPUS were absent. CONCLUSIONS: These results indicated that LIPUS could ameliorate AngII-induced cardiac fibrosis by alleviating inflammation via a caveolin-1-dependent pathway, providing new insights for the development of novel therapeutic apparatus in clinical practice.


Assuntos
Cardiomegalia/terapia , Caveolina 1/fisiologia , Inflamação/prevenção & controle , Miocárdio/patologia , Ondas Ultrassônicas , Angiotensina II/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Células Cultivadas , Fibrose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
16.
Cell Death Discov ; 7(1): 291, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645805

RESUMO

Myocardial infarction (MI), one of the most severe types of heart attack, exerts a strong negative effect on heart muscle by causing a massive and rapid loss of cardiomyocytes. However, the existing therapies do little to improve cardiac regeneration. Due to the role of methyltransferase-like 3 (METTL3) in the physiological proliferation of cardiomyocytes, we aimed to determine whether METTL3 could also promote cardiomyocyte proliferation under pathological conditions and to elucidate the underlying mechanism. The effects of METTL3 on cardiomyocyte proliferation and apoptosis were investigated in an in vivo rat model of MI and in an in vitro model of neonatal rat cardiomyocytes (NRCMs) exposed to hypoxia. We found that METTL3 expression was downregulated in hypoxia-exposed NRCMs and MI-induced rats. Furthermore, METTL3 pretreatment enhanced cardiomyocyte proliferation and inhibited cardiomyocyte apoptosis under hypoxic or MI conditions, and silencing METTL3 had the opposite effects. Additionally, METTL3 overexpression upregulated miR-17-3p expression. The miR-17-3p agomir mimicked the pro-proliferative and antiapoptotic effects of METTL3 in hypoxia-exposed cells or rats with MI, while the miR-17-3p antagomir blocked these effects. Additionally, pretreatment with the RNA-binding protein DGCR8 also hampered the protective role of METTL3 in hypoxia-exposed cells. Overall, the current study indicated that METTL3 could improve cardiomyocyte proliferation and subsequently ameliorate MI in rats by upregulating proliferation-related miR-17-3p in a DGCR8-dependent pri-miRNA-processing manner.

17.
PLoS One ; 16(10): e0258483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34710109

RESUMO

This study investigates the degradation of nifedipine (NIF) by using a novel and highly efficient ultraviolet light combined with hydrogen peroxide (UV/H2O2). The degradation rate and degradation kinetics of NIF first increased and then remained constant as the H2O2 dose increased, and the quasi-percolation threshold was an H2O2 dose of 0.378 mmol/L. An increase in the initial pH and divalent anions (SO42- and CO32-) resulted in a linear decrease of NIF (the R2 of the initial pH, SO42- and CO32- was 0.6884, 0.9939 and 0.8589, respectively). The effect of monovalent anions was complex; Cl- and NO3- had opposite effects: low Cl- or high NO3- promoted degradation, and high Cl- or low NO3- inhibited the degradation of NIF. The degradation rate and kinetics constant of NIF via UV/H2O2 were 99.94% and 1.45569 min-1, respectively, and the NIF concentration = 5 mg/L, pH = 7, the H2O2 dose = 0.52 mmol/L, T = 20 ℃ and the reaction time = 5 min. The ·OH was the primary key reactive oxygen species (ROS) and ·O2- was the secondary key ROS. There were 11 intermediate products (P345, P329, P329-2, P315, P301, P274, P271, P241, P200, P181 and P158) and 2 degradation pathways (dehydrogenation of NIF → P345 → P274 and dehydration of NIF → P329 → P315).


Assuntos
Raios Ultravioleta , Peróxido de Hidrogênio , Cinética , Nifedipino
18.
Eur J Pharmacol ; 911: 174509, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34547245

RESUMO

Vascular events can trigger a pathological phenotypic switch in vascular smooth muscle cells (VSMCs), decreasing and disrupting the plasticity and diversity of vascular networks. The development of novel therapeutic approaches is necessary to prevent these changes. We aimed to investigate the effects and associated mechanisms of low-intensity pulsed ultrasound (LIPUS) irradiation on the angiotensin II (AngII)-induced phenotypic switch in VSMCs. In vivo, AngII was infused subcutaneously for 4 weeks to stimulate vascular remodeling in mice, and LIPUS irradiation was applied for 20 min every 2 days for 4 weeks. In vitro, cultured rat aortic VSMCs (RAVSMCs) were pretreated once with LIPUS irradiation for 20 min before 48-h AngII stimulation. Our results showed that LIPUS irradiation prevents AngII-induced vascular remodeling of the whole wall artery without discriminating between adventitia and media in vivo and RAVSMC phenotypic switching in vitro. LIPUS irradiation downregulated miR-17-5p expression and upregulated peroxisome proliferator-activated receptor gamma (PPAR-γ) expression. The PPAR-γ activator rosiglitazone could mimic the favorable effects of LIPUS irradiation on AngII-treated RAVSMCs. In contrast, GW9662 could impede the LIPUS-mediated downregulation of RAVSMC proliferation and inflammation under AngII stimulation conditions in vivo and in vitro. Also, the miR-17-5p agomir has the same effects as GW9662 in vitro. Besides, the inhibitory effects of GW9662 against the anti-remodeling effects of LIPUS irradiation in AngII-induced RAVSMCs could be blocked by pretreatment with the miR-17-5p antagomir. Overall, LIPUS irradiation prevents AngII-induced RAVSMCs phenotypic switching through hampering miR-17-5p and enhancing PPAR-γ, suggesting a new approach for the treatment of vascular disorders.


Assuntos
Angiotensina II
19.
Clin Exp Pharmacol Physiol ; 48(11): 1500-1514, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34343366

RESUMO

Hypoxia-induced cardiac fibrosis is an important pathological process in cardiovascular disorders. This study aimed to determine whether low-intensity pulsed ultrasound (LIPUS), a novel and safe apparatus, could alleviate hypoxia-induced cardiac fibrosis, and to elucidate the underlying mechanisms. Hypoxia (1% O2 ) and transverse aortic constriction (TAC) were performed on neonatal rat cardiac fibroblasts and mice to induce cardiac fibrosis, respectively. LIPUS irradiation was applied for 20 minutes every 6 hours for a total of 2 times in vitro, and every 2 days from 1 week before surgery to 4 weeks after surgery in vivo. We found that LIPUS dose-dependently attenuated hypoxia-induced cardiac fibroblast phenotypic conversion in vitro, and ameliorated TAC-induced cardiac fibrosis in vivo. Hypoxia significantly upregulated the nuclear protein expression of hypoxia-inducible factor-1α (HIF-1α) and DNA methyltransferase 3a (DNMT3a). LIPUS pre-treatment reversed the elevated expression of HIF-1α, and DNMT3a. Further experiments revealed that HIF-1α stabilizer dimethyloxalylglycine (DMOG) hindered the anti-fibrotic effect of LIPUS, and hampered LIPUS-mediated downregulation of DNMT3a. DNMT3a small interfering RNA (siRNA) prevented hypoxia-induced cardiac fibrosis. Results also showed that the mechanosensitive protein-TWIK-related arachidonic acid-activated K+ channel (TRAAK) messenger RNA (mRNA) expression was downregulated in hypoxia-induced cardiac fibroblasts, and TAC-induced hearts. TRAAK siRNA impeded LIPUS-mediated anti-fibrotic effect and downregulation of HIF-1α and DNMT3a. Above results indicated that LIPUS could prevent prolonged hypoxia-induced cardiac fibrosis through TRAAK-mediated HIF-1α/DNMT3a signalling pathway.


Assuntos
DNA Metiltransferase 3A
20.
Front Cell Dev Biol ; 9: 670528, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249924

RESUMO

AIM: Pterygium is a common ocular surface disease, which is affected by a variety of factors. Invasion of the cornea can cause severe vision loss. N6-methyladenosine (m6A) is a common post-transcriptional modification of eukaryotic mRNA, which can regulate mRNA splicing, stability, nuclear transport, and translation. To our best knowledge, there is no current research on the mechanism of m6A in pterygium. METHODS: We obtained 24 pterygium tissues and 24 conjunctival tissues from each of 24 pterygium patients recruited from Shanghai Yangpu Hospital, and the level of m6A modification was detected using an m6A RNA Methylation Quantification Kit. Expression and location of METTL3, a key m6A methyltransferase, were identified by immunostaining. Then we used m6A-modified RNA immunoprecipitation sequencing (MeRIP-seq), RNA sequencing (RNA-seq), and bioinformatics analyses to compare the differential expression of m6A methylation in pterygium and normal conjunctival tissue. RESULTS: We identified 2,949 dysregulated m6A peaks in pterygium tissue, of which 2,145 were significantly upregulated and 804 were significantly downregulated. The altered m6A peak of genes were found to play a key role in the Hippo signaling pathway and endocytosis. Joint analyses of MeRIP-seq and RNA-seq data identified 72 hypermethylated m6A peaks and 15 hypomethylated m6A peaks in mRNA. After analyzing the differentially methylated m6A peaks and synchronously differentially expressed genes, we searched the Gene Expression Omnibus database and identified five genes related to the development of pterygium (DSP, MXRA5, ARHGAP35, TMEM43, and OLFML2A). CONCLUSION: Our research shows that m6A modification plays an important role in the development of pterygium and can be used as a potential new target for the treatment of pterygium in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA