Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39205106

RESUMO

Small-modulus gears, which are essential for motion transmission in precision instruments, present a measurement challenge due to their minuscule gear gaps. A high-precision measurement method under the influence of positioning errors is proposed, enabling precise evaluation of the machining quality of small-modulus gears. Firstly, a compound measurement platform for small-modulus gears is developed. Using a 3D model of the measurement system, the mathematical relationships governing motion transmission between various components are analyzed. Secondly, the formation mechanism of gear positioning error is revealed and its important influence on measurement accuracy is discussed. An optimization method for spatial coordinate transformation matrices under positioning errors of gears is proposed. Thirdly, the study focuses on small-sized gears with a modulus of 0.1 mm and a six-level accuracy. Based on the aforementioned measurement system, the tooth profile measurement points are collected in the actual workpiece coordinate system. Then, gear error parameters are extracted based on the established models for tooth profile deviation and pitch deviation. Finally, the accuracy and effectiveness of the proposed measurement method are verified by comparing the measurement results of the P26 gear measuring center.

2.
Nanomaterials (Basel) ; 12(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35808147

RESUMO

Adjustable lubrication aims to achieve active control of the relative motion of the friction interface, providing a new idea for intelligent operation. A new phenomenon of sudden changes of friction coefficient (COF) in the poly(vinylphosphoric acid) (PVPA) superlubricity system by mixing different lubricants, was found in this study. It was found that anions were the critical factor for the COF change. The change degrees of the COF were investigated by a universal micro tribometer (UMT). A quartz crystal microbalance (QCM)-D was used to analyze the adsorption quantity of anions on the PVPA surface. The hydratability of the PVPA interface was controlled by changing the anionic properties (the amount of charge and structure), thus regulating the COF. The adsorption difference of anions is an important reasoning of how anionic properties can regulate the hydratability. It was analyzed by molecular dynamics simulation. For anions carrying different numbers of charges or double bonds, the adsorption quantity of anions was mainly affected by the adsorption degree on the PVPA surface, while the adsorption quantity of anions with different molecular configuration was synergistically regulated by the adsorption degree and adsorption area of anions on the PVPA surface. This work can be used to develop smart surfaces for applications.

3.
AAPS PharmSciTech ; 19(3): 1231-1242, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29302871

RESUMO

The solvent-shift method was used to identify appropriate polymers that inhibit the growth of felodipine crystals by monitoring particle size in supersaturated drug solutions in the presence of different polymers. We speculated that there would be an intermolecular interaction between the selected polymer (zein) and felodipine by extrapolating the inhibitory effect on crystal growth and then used the selected polymer as a carrier to prepare solid dispersions. The formulations were characterized by crystalline properties, thermodynamics of mixing, dissolution behavior, and physical stability. Powder x-ray diffraction and differential scanning calorimetry experiments indicated that amorphous solid dispersions were formed when the proportion of felodipine was < 30% (w/w). Stability tests showed that a solid dispersion with 20% felodipine remained in an amorphous state and was stable under accelerated storage conditions for 6 months. The dissolution rates of solid dispersions were significantly greater than those of the active pharmaceutical ingredient or physical mixtures. Analysis by Fourier-transform infrared spectroscopy and Raman microspectroscopy indicated the formation of intermolecular interactions between zein and felodipine. The study demonstrates the successful application of the chosen polymer as a carrier in solid dispersions and validates the concept of extrapolating the inhibitory effect on crystal growth to intermolecular interactions.


Assuntos
Felodipino/administração & dosagem , Felodipino/química , Cristalização , Composição de Medicamentos , Estabilidade de Medicamentos , Polímeros/química , Solubilidade , Solventes , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Termodinâmica , Difração de Raios X , Zeína/química
4.
Eur J Pharm Sci ; 106: 381-392, 2017 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-28571783

RESUMO

Bicalutamide-bovine serum albumin (Bic-BSA) complexes were prepared by anti-solvent precipitation. Bovine serum albumin (BSA) was used as a stabilizer for particle growth. The physicochemical properties of Bic-BSA were analyzed by scanning electron microscopy, X-ray powder diffraction and differential scanning calorimetry. The interaction between Bic and BSA was characterized by Fourier transform infrared spectroscopy, Raman spectroscopy, fluorescence spectroscopy and molecular docking. The particle size could be easily reduced to 1-10µm with a good lognormal distribution. The Bic-BSA complexes exhibited nonporous spherical morphology with a uniformly plicated surface. Moreover, the crystal form and thermostability of Bic were altered in the presence of BSA. Bic was found to make hydrogen bonding and hydrophobic interactions with BSA by spectroscopic studies and molecular docking. Results from the Van't Hoff equation and binding free energy calculations indicated that the improvement of physicochemical properties was the consequence of a variety of interactions in the Bic-BSA system. Bic-BSA tablets showed significantly enhanced dissolution. It was concluded that BSA plays an important role in improving the physicochemical properties of Bic due to strong multiple interactions between Bic and BSA.


Assuntos
Anilidas/química , Nitrilas/química , Soroalbumina Bovina/química , Compostos de Tosil/química , Varredura Diferencial de Calorimetria , Liberação Controlada de Fármacos , Microscopia Eletrônica de Varredura , Simulação de Acoplamento Molecular , Tamanho da Partícula , Difração de Pó , Espectrometria de Fluorescência , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
5.
Langmuir ; 33(9): 2133-2140, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28183180

RESUMO

Poly(vinylphosphonic acid) (PVPA) cross-linked networks on Ti6Al4V show superlubricity behavior when sliding against polytetrafluoroethylene in water-based lubricants. The superlubricity can occur but only with the existence of salt ions in the polymer cross-linked networks. This is different from the phenomenon in most polymer brushes. An investigation into the mechanism revealed that cations and anions in the lubricants worked together to yield the superlubricity even under harsh conditions. It is proposed that the preferential interactions of cations with PVPA molecules rather than water molecules are the main reason for the superlubricity in water-based lubricants. The interaction of anions with water molecules regulates the properties of the tribological interfaces, which influences the magnitude of the friction coefficient. Owing to the novel cross-linked networks and the interactions between cations and polymer molecules, their superlubricity can be maintained even at a high salt ion concentration of 5 M. These excellent properties make PVPA-modified Ti6Al4V a potential candidate for application in artificial implants.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA