Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Cell Rep ; 42(12): 1891-1906, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37743376

RESUMO

KEY MESSAGE: The study of the origin, evolution, and diversification of the wall-associated kinase gene family in plants facilitates their functional investigations in the future. Wall-associated kinases (WAKs) make up one subfamily of receptor-like kinases (RLKs), and function directly in plant cell elongation and responses to biotic and abiotic stresses. The biological functions of WAKs have been extensively characterized in angiosperms; however, the origin and evolutionary history of the WAK family in green plants remain unclear. Here, we performed a comprehensive analysis of the WAK family to reveal its origin, evolution, and diversification in green plants. In total, 1061 WAK genes were identified in 37 species from unicellular algae to multicellular plants, and the results showed that WAK genes probably originated before bryophyte differentiation and were widely distributed in land plants, especially angiosperms. The phylogeny indicated that the land plant WAKs gave rise to five clades and underwent lineage-specific expansion after species differentiation. Cis-acting elements and expression patterns analyses of WAK genes in Arabidopsis and rice demonstrated the functional diversity of WAK genes in these two species. Many gene gains and losses have occurred in angiosperms, leading to an increase in the number of gene copies. The evolutionary trajectory of the WAK family during polyploidization was uncovered using Gossypium species. Our results provide insights into the evolution of WAK genes in green plants, facilitating their functional investigations in the future.


Assuntos
Arabidopsis , Plantas , Plantas/genética , Genes de Plantas/genética , Arabidopsis/genética , Família Multigênica
2.
Heliyon ; 9(8): e18731, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37576216

RESUMO

Verticillium wilt (VW), Fusarium wilt (FW) and Root-knot nematode (RKN) are the main diseases affecting cotton production. However, many reported quantitative trait loci (QTLs) for cotton resistance have not been used for agricultural practices because of inconsistencies in the cotton genetic background. The integration of existing cotton genetic resources can facilitate the discovery of important genomic regions and candidate genes involved in disease resistance. Here, an improved and comprehensive meta-QTL analysis was conducted on 487 disease resistant QTLs from 31 studies in the last two decades. A consensus linkage map with genetic overall length of 3006.59 cM containing 8650 markers was constructed. A total of 28 Meta-QTLs (MQTLs) were discovered, among which nine MQTLs were identified as related to resistance to multiple diseases. Candidate genes were predicted based on public transcriptome data and enriched in pathways related to disease resistance. This study used a method based on the integration of Meta-QTL, known genes and transcriptomics to reveal major genomic regions and putative candidate genes for resistance to multiple diseases, providing a new basis for marker-assisted selection of high disease resistance in cotton breeding.

3.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298464

RESUMO

Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.


Assuntos
S-Adenosilmetionina , Tolerância ao Sal , Tolerância ao Sal/genética , Estresse Salino , Estresse Fisiológico/genética , Gossypium/genética , Regulação da Expressão Gênica de Plantas
4.
Plant Physiol Biochem ; 201: 107853, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37385030

RESUMO

Protein ubiquitination is essential for plant growth and responses to the environment. The SEVEN IN ABSENTIA (SINA) ubiquitin ligases have been extensively studied in plants, but information on their roles in fiber development is limited. Here, we identified GhSINA1 in Upland cotton (Gossypium hirsutum), which has a conserved RING finger domain and SINA domain. Quantitative real-time PCR (qRT-PCR) analysis showed that GhSINA1 was preferentially expressed during fiber initiation and elongation, especially during initiation in the fuzzless-lintless cotton mutant. Subcellular localization experiments indicated that GhSINA1 localized to the nucleus. In vitro ubiquitination analysis revealed that GhSINA1 has E3 ubiquitin ligase activity. Ectopic overexpression of GhSINA1 in Arabidopsis thaliana reduced the number and length of root hairs and trichomes. Yeast two-hybrid (Y2H), firefly luciferase complementation imaging (LCI), and bimolecular fluorescence complementation (BiFC) assays demonstrated that the GhSINA1 proteins could interact with each other to form homodimers and heterodimers. Overall, these results suggest that GhSINA1 may act as a negative regulator in cotton fiber development through homodimerization and heterodimerization.


Assuntos
Arabidopsis , Gossypium , Gossypium/metabolismo , Fibra de Algodão , Ubiquitina/metabolismo , Ligases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas
5.
Curr Issues Mol Biol ; 45(5): 4050-4062, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37232727

RESUMO

Copper(II) (Cu2+) is essential for plant growth and development. However, high concentrations are extremely toxic to plants. We investigated the tolerance mechanism of cotton under Cu2+ stress in a hybrid cotton variety (Zhongmian 63) and two parent lines with different Cu2+ concentrations (0, 0.2, 50, and 100 µM). The stem height, root length, and leaf area of cotton seedlings had decreased growth rates in response to increasing Cu2+ concentrations. Increasing Cu2+ concentration promoted Cu2+ accumulation in all three cotton genotypes' roots, stems, and leaves. However, compared with the parent lines, the roots of Zhongmian 63 were richer in Cu2+ and had the least amount of Cu2+ transported to the shoots. Moreover, excess Cu2+ also induced changes in cellular redox homeostasis, causing accumulation of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Conversely, antioxidant enzyme activity increased, while photosynthetic pigment content decreased. Our findings indicated that the hybrid cotton variety fared well under Cu2+ stress. This creates a theoretical foundation for the further analysis of the molecular mechanism of cotton resistance to copper and suggests the potential of the large-scale planting of Zhongmian 63 in copper-contaminated soils.

6.
Acta Pharmacol Sin ; 44(2): 308-320, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35948752

RESUMO

Sensitization of central pain and inflammatory pathways play essential roles in migraine, a primary neurobiological headache disorder. Since hypoxia-inducible factor-1α (HIF-1α) is implicated in neuroprotection and inflammation inhibition, herein we investigated the role of HIF-1α in migraine. A chronic migraine model was established in mice by repeated injection of nitroglycerin (10 mg/kg, i.p.) every other day for 5 total injections. In the prevention and acute experiments, roxadustat, a HIF-1α stabilizer, was orally administered starting before or after nitroglycerin injection, respectively. Pressure application measurement, and tail flick and light-aversive behaviour tests were performed to determine the pressure pain threshold, thermal nociceptive sensitivity and migraine-related light sensitivity. At the end of experiments, mouse serum samples and brain tissues were collected for analyses. We showed that roxadustat administration significantly attenuated nitroglycerin-induced basal hypersensitivity and acute hyperalgesia by improving central sensitization. Roxadustat administration also decreased inflammatory cytokine levels in serum and trigeminal nucleus caudalis (TNC) through NF-κB pathway. Consistent with the in vivo results showing that roxadustat inhibited microglia activation, roxadustat (2, 10, and 20 µM) dose-dependently reduced ROS generation and inflammation in LPS-stimulated BV-2 cells, a mouse microglia cell line, by inhibiting HIF-1α/NF-κB pathway. Taken together, this study demonstrates that roxadustat administration ameliorates migraine-like behaviours and inhibits central pain sensitization in nitroglycerin-injected mice, which is mainly mediated by HIF-1α/NF-κB/inflammation pathway, suggesting the potential of HIF-1α activators as therapeutics for migraine.


Assuntos
Transtornos de Enxaqueca , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Nitroglicerina/efeitos adversos , Subunidade alfa do Fator 1 Induzível por Hipóxia , Limiar da Dor , Transtornos de Enxaqueca/induzido quimicamente , Transtornos de Enxaqueca/tratamento farmacológico , Transtornos de Enxaqueca/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico
7.
Front Pharmacol ; 13: 895710, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35620283

RESUMO

Alcoholic liver disease (ALD) is a worldwide healthcare problem featured by inflammation, reactive oxygen species (ROS), and lipid dysregulation. Roxadustat is used for chronic kidney disease anemia treatment. As a specific inhibitor of prolyl hydroxylase, it can maintain high levels of hypoxia-inducible factor 1α (HIF-1α), through which it can further influence many important pathways, including the three featured in ALD. However, its effects on ALD remain to be elucidated. In this study, we used chronic and acute ALD mouse models to investigate the protective effects of roxadustat in vivo. Our results showed that long- and short-term alcohol exposure caused rising activities of serum transaminases, liver lipid accumulation, and morphology changes, which were reversed by roxadustat. Roxadustat-reduced fatty liver was mainly contributed by the reducing sterol-responsive element-binding protein 1c (SREBP1c) pathway, and enhancing ß-oxidation through inducing peroxisome proliferator-activated receptor α (PPARα) and carnitine palmitoyltransferase 1A (CPT1A) expression. Long-term alcohol treatment induced the infiltration of monocytes/macrophages to hepatocytes, as well as inflammatory cytokine expression, which were also blocked by roxadustat. Moreover, roxadustat attenuated alcohol caused ROS generation in the liver of those two mouse models mainly by reducing cytochrome P450 2E1 (CYP2E1) and enhancing superoxidase dismutase 1 (SOD1) expression. In vitro, we found roxadustat reduced inflammation and lipid accumulation mainly via HIF-1α regulation. Taken together, our study demonstrates that activation of HIF-1α can ameliorate ALD, which is contributed by reduced hepatic lipid synthesis, inflammation, and oxidative stress. This study suggested that roxadustat could be a potential drug for ALD treatment.

8.
Plants (Basel) ; 11(8)2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35448769

RESUMO

Histone demethylases containing JumonjiC (JmjC) domains regulate gene transcription and chromatin structure by changing the methylation status of lysine residues and play an important role in plant growth and development. In this study, a total of 332 JmjC family genes were identified from 21 different plant species. The evolutionary analysis results showed that the JmjC gene was detected in each species, that is, the gene has already appeared in algae. The phylogenetic analysis showed that the KDM3/JHDM2 subfamily genes may have appeared when plants transitioned from water to land, but were lost in lycophytes (Selaginella moellendorffii). During the evolutionary process, some subfamily genes may have been lost in individual species. According to the analysis of the conserved domains, all of the plant JmjC genes contained a typical JmjC domain, which was highly conserved during plant evolution. The analysis of cis-acting elements showed that the promoter region of the JmjC gene was rich in phytohormones and biotic and abiotic stress-related elements. The transcriptome data analysis and protein interaction analyses showed that JmjC genes play an important role in plant growth and development. The results clarified the evolutionary history of JmjC family genes in plants and lay the foundation for the analysis of the biological functions of JmjC family genes.

9.
Oxid Med Cell Longev ; 2022: 3087198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35082966

RESUMO

The formation of a thrombus is closely related to oxidative stress and inflammation. Colchicine is one of the most commonly prescribed medication for gout treatment, with anti-inflammation and antioxidative stress properties. Therefore, we speculated that it is possible for colchicine to treat thrombosis. In this study, we used carrageenan to induce thrombosis in BALB/c mice and fed mice with colchicine, ticagrelor, and their combination, respectively. We found colchicine inhibited carrageenan-induced thrombi in mouse tail, and the inhibition was enhanced by ticagrelor. In vitro, colchicine inhibited thrombin-induced retraction of human platelet clots. Mechanically, colchicine inhibited platelet activation by reducing the expression of platelet receptors, protease-activated receptor 4 (PAR4) and CD36, and inactivating of AKT and ERK1/2 pathways. Furthermore, in human umbilical vein endothelial cells (HUVECs), colchicine showed antioxidative stress effects through increasing protein expression of glutathione peroxidase-1 (GPx-1), and mRNA levels of forkhead box O3 (FOXO3a) and superoxide dismutase 2 (SOD2). In RAW264.7 cells, colchicine reduced LPS-enhanced inflammatory response through attenuating toll-like receptor 4 (TLR4) activation. In addition, colchicine reduced LPS or ox-LDL-induced monocyte adhesion to HUVECs by inhibiting intercellular adhesion molecule-1 (ICAM-1) and vascular adhesion molecule-1 (VCAM-1) levels. Taken together, our study demonstrates that colchicine exerts antithrombotic function by attenuating platelet activation and inhibiting oxidative stress and inflammation. We also provide a potential new strategy for clinical treatment.


Assuntos
Carragenina/efeitos adversos , Colchicina/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Trombose/induzido quimicamente , Trombose/tratamento farmacológico , Ticagrelor/uso terapêutico , Animais , Colchicina/farmacologia , Humanos , Masculino , Camundongos , Inibidores da Agregação Plaquetária/farmacologia , Fatores de Risco , Ticagrelor/farmacologia
10.
J Exp Bot ; 73(3): 711-726, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34636403

RESUMO

In plants, glucose (Glc) plays important roles, as a nutrient and signal molecule, in the regulation of growth and development. However, the function of Glc in fiber development of upland cotton (Gossypium hirsutum) is unclear. Here, using gas chromatography-mass spectrometry (GC-MS), we found that the Glc content in fibers was higher than that in ovules during the fiber elongation stage. In vitro ovule culture revealed that lower Glc concentrations promoted cotton fiber elongation, while higher concentrations had inhibitory effects. The hexokinase inhibitor N-acetylglucosamine (NAG) inhibited cotton fiber elongation in the cultured ovules, indicating that Glc-mediated fiber elongation depends on the Glc signal transduced by hexokinase. RNA sequencing (RNA-seq) analysis and hormone content detection showed that 150mM Glc significantly activated brassinosteroid (BR) biosynthesis, and the expression of signaling-related genes was also increased, which promoted fiber elongation. In vitro ovule culture clarified that BR induced cotton fiber elongation in a dose-dependent manner. In hormone recovery experiments, only BR compensated for the inhibitory effects of NAG on fiber elongation in a Glc-containing medium. However, the ovules cultured with the BR biosynthetic inhibitor brassinazole and from the BR-deficient cotton mutant pag1 had greatly reduced fiber elongation at all the Glc concentrations tested. This demonstrates that Glc does not compensate for the inhibition of fiber elongation caused by BR biosynthetic defects, suggesting that the BR signaling pathway works downstream of Glc during cotton fiber elongation. Altogether, our study showed that Glc plays an important role in cotton fibre elongation, and crosstalk occurs between Glc and BR signaling during modulation of fiber elongation.


Assuntos
Brassinosteroides , Fibra de Algodão , Brassinosteroides/metabolismo , Regulação da Expressão Gênica de Plantas , Glucose/metabolismo , Gossypium/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
11.
Front Plant Sci ; 12: 760520, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777442

RESUMO

Ubiquitination is a post-translational regulatory mechanism that controls a variety of biological processes in plants. The E3 ligases confer specificity by recognizing target proteins for ubiquitination. Here, we identified SEVEN IN ABSENTIA (SINA) ubiquitin ligases, which belong to the RING-type E3 ligase family, in upland cotton (Gossypium hirsutum). Twenty-four GhSINAs were characterized, and the expression levels of GhSINA7, GhSINA8, and GhSINA9 were upregulated at 24 h after inoculation with Verticillium dahliae. In vitro ubiquitination assays indicated that the three GhSINAs possessed E3 ubiquitin ligase activities. Transient expression in Nicotiana benthamiana leaves showed that they localized to the nucleus. And yeast two-hybrid (Y2H) screening revealed that they could interact with each other. The ectopic overexpression of GhSINA7, GhSINA8, and GhSINA9 independently in Arabidopsis thaliana resulted in increased tolerance to V. dahliae, while individual knockdowns of GhSINA7, GhSINA8, and GhSINA9 compromised cotton resistance to the pathogen. Thus, GhSINA7, GhSINA8, and GhSINA9 act as positive regulators of defense responses against V. dahliae in cotton plants.

12.
Front Plant Sci ; 12: 690754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34386026

RESUMO

The SWEET (sugars will eventually be exported transporter) proteins, a family of sugar transporters, mediate sugar diffusion across cell membranes. Pathogenic fungi can acquire sugars from plant cells to satisfy their nutritional demands for growth and infection by exploiting plant SWEET sugar transporters. However, the mechanism underlying the sugar allocation in cotton plants infected by Verticillium dahliae, the causative agent of Verticillium wilt, remains unclear. In this study, observations of the colonization of cotton roots by V. dahliae revealed that a large number of conidia had germinated at 48-hour post-inoculation (hpi) and massive hyphae had appeared at 96 hpi. The glucose content in the infected roots was significantly increased at 48 hpi. On the basis of an evolutionary analysis, an association analysis, and qRT-PCR assays, GhSWEET42 was found to be closely associated with V. dahliae infection in cotton. Furthermore, GhSWEET42 was shown to encode a glucose transporter localized to the plasma membrane. The overexpression of GhSWEET42 in Arabidopsis thaliana plants led to increased glucose content, and compromised their resistance to V. dahliae. In contrast, knockdown of GhSWEET42 expression in cotton plants by virus-induced gene silencing (VIGS) led to a decrease in glucose content, and enhanced their resistance to V. dahliae. Together, these results suggest that GhSWEET42 plays a key role in V. dahliae infection in cotton through glucose translocation, and that manipulation of GhSWEET42 expression to control the glucose level at the infected site is a useful method for inhibiting V. dahliae infection.

13.
Int J Biol Macromol ; 187: 867-879, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34339786

RESUMO

The wall-associated kinases (WAKs) and WAK-like kinases (WAKLs) form a group of receptor-like kinases (RLKs) with extracellular domains tightly linked to the cell wall. The WAKs/WAKLs have been known to be involved in plant growth, development, and stress responses. However, the functions of WAKs/WAKLs are less well known in cotton. In this study, 58, 66, and 99 WAK/WAKL genes were identified in Gossypium arboreum, G. raimondii, and G. hirsutum, respectively. Phylogenetic analysis showed they were classified into five groups, with two groups specific to cotton. Collinearity analysis revealed that segmental and tandem duplications resulted in expansion of the WAK/WAKL gene family in cotton. Moreover, the Ka/Ks ratios indicated this family was exposed to purifying selection pressure during evolution. The structures of the GhWAK/WAKL genes and encoded proteins suggested the functions of WAKs/WAKLs in cotton were conserved. Transient expression of four WAK/WAKL-GFP fusion constructs in Arabidopsis protoplasts indicated that they were localized on the plasma membrane. The cis-elements in the GhWAK/WAKL promoters were responsive to multiple phytohormones and abiotic stresses. Expression profiling showed that GhWAK/WAKL genes were induced by various abiotic stresses. This study provides insights into the evolution of WAK/WAKL genes and presents fundamental information for further analysis in cotton.


Assuntos
Membrana Celular/enzimologia , Parede Celular/enzimologia , Gossypium/enzimologia , Proteínas Quinases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Membrana Celular/genética , Parede Celular/genética , Bases de Dados Genéticas , Evolução Molecular , Regulação da Expressão Gênica de Plantas , Gossypium/genética , Filogenia , Proteínas Quinases/genética , Estresse Fisiológico , Transcriptoma
14.
Genes (Basel) ; 12(6)2021 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-34071968

RESUMO

Cotton is one of the most important fiber and oil crops in the world. Chloroplast genomes harbor their own genetic materials and are considered to be highly conserved. Transfer RNAs (tRNAs) act as "bridges" in protein synthesis by carrying amino acids. Currently, the variation and evolutionary characteristics of tRNAs in the cotton chloroplast genome are poorly understood. Here, we analyzed the structural variation and evolution of chloroplast tRNA (cp tRNA) based on eight diploid and two allotetraploid cotton species. We also investigated the nucleotide evolution of chloroplast genomes in cotton species. We found that cp tRNAs in cotton encoded 36 or 37 tRNAs, and 28 or 29 anti-codon types with lengths ranging from 60 to 93 nucleotides. Cotton chloroplast tRNA sequences possessed specific conservation and, in particular, the Ψ-loop contained the conserved U-U-C-X3-U. The cp tRNAs of Gossypium L. contained introns, and cp tRNAIle contained the anti-codon (C-A-U), which was generally the anti-codon of tRNAMet. The transition and transversion analyses showed that cp tRNAs in cotton species were iso-acceptor specific and had undergone unequal rates of evolution. The intergenic region was more variable than coding regions, and non-synonymous mutations have been fixed in cotton cp genomes. On the other hand, phylogeny analyses indicated that cp tRNAs of cotton were derived from several inferred ancestors with greater gene duplications. This study provides new insights into the structural variation and evolution of chloroplast tRNAs in cotton plants. Our findings could contribute to understanding the detailed characteristics and evolutionary variation of the tRNA family.


Assuntos
Evolução Molecular , Genes de Cloroplastos , Variação Estrutural do Genoma , Gossypium/genética , RNA de Transferência/genética , Códon/genética , Gossypium/classificação , Filogenia
15.
Plants (Basel) ; 9(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233854

RESUMO

Histone modification is an important epigenetic modification that controls gene transcriptional regulation in eukaryotes. Histone methylation is accomplished by histone methyltransferase and can occur on two amino acid residues, arginine and lysine. JumonjiC (JmjC) domain-containing histone demethylase regulates gene transcription and chromatin structure by changing the methylation state of the lysine residue site and plays an important role in plant growth and development. In this study, we carried out genome-wide identification and comprehensive analysis of JmjC genes in the allotetraploid cotton species Gossypium hirsutum. In total, 50 JmjC genes were identified and in G. hirsutum, and 25 JmjC genes were identified in its two diploid progenitors, G. arboreum and G. raimondii, respectively. Phylogenetic analysis divided these JmjC genes into five subfamilies. A collinearity analysis of the two subgenomes of G. hirsutum and the genomes of G. arboreum and G. raimondii uncovered a one-to-one relationship between homologous genes of the JmjC gene family. Most homologs in the JmjC gene family between A and D subgenomes of G. hirsutum have similar exon-intron structures, which indicated that JmjC family genes were conserved after the polyploidization. All G. hirsutumJmjC genes were found to have a typical JmjC domain, and some genes also possess other special domains important for their function. Analysis of promoter regions revealed that cis-acting elements, such as those related to hormone and abiotic stress response, were enriched in G. hirsutum JmjC genes. According to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, most G. hirsutumJmjC genes had high abundance expression at developmental stages of fibers, suggesting that they might participate in cotton fiber development. In addition, some G. hirsutumJmjC genes were found to have different degrees of response to cold or osmotic stress, thus indicating their potential role in these types of abiotic stress response. Our results provide useful information for understanding the evolutionary history and biological function of JmjC genes in cotton.

16.
BMC Plant Biol ; 20(1): 395, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854609

RESUMO

BACKGROUND: Fiber quality is an important economic trait of cotton, and its improvement is a major goal of cotton breeding. To better understand the genetic mechanisms responsible for fiber quality traits, we conducted a genome-wide association study to identify and mine fiber-quality-related quantitative trait loci (QTLs) and genes. RESULTS: In total, 42 single nucleotide polymorphisms (SNPs) and 31 QTLs were identified as being significantly associated with five fiber quality traits. Twenty-five QTLs were identified in previous studies, and six novel QTLs were firstly identified in this study. In the QTL regions, 822 genes were identified and divided into four clusters based on their expression profiles. We also identified two pleiotropic SNPs. The SNP locus i52359Gb was associated with fiber elongation, strength, length and uniformity, while i11316Gh was associated with fiber strength and length. Moreover, these two SNPs were nonsynonymous and located in genes Gh_D09G2376 and Gh_D06G1908, respectively. RT-qPCR analysis revealed that these two genes were preferentially expressed at one or more stages of cotton fiber development, which was consistent with the RNA-seq data. Thus, Gh_D09G2376 and Gh_D06G1908 may be involved in fiber developmental processes. CONCLUSIONS: The findings of this study provide insights into the genetic bases of fiber quality traits, and the identified QTLs or genes may be applicable in cotton breeding to improve fiber quality.


Assuntos
Fibra de Algodão/análise , Genes de Plantas , Estudo de Associação Genômica Ampla , Gossypium/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Gossypium/anatomia & histologia , Gossypium/fisiologia
17.
Plant Divers ; 42(3): 189-197, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32695952

RESUMO

Gene flow patterns and the genetic structure of domesticated crops like cotton are not well understood. Furthermore, marker-assisted breeding of cotton has lagged far behind that of other major crops because the loci associated with cotton traits such as fiber yield and quality have scarcely been identified. In this study, we used 19 microsatellites to first determine the population genetic structure and patterns of gene flow of superior germplasm resources in upland cotton. We then used association analysis to identify which markers were associated with 15 agronomic traits (including ten yield and five fiber quality traits). The results showed that the upland cotton accessions have low levels of genetic diversity (polymorphism information content = 0.427), although extensive gene flow occurred among different ecological and geographic regions. Bayesian clustering analysis indicated that the cotton resources used in this study did not belong to obvious geographic populations, which may be the consequence of a single source of domestication followed by frequent genetic introgression mediated by human transference. A total of 82 maker-trait associations were examined in association analysis and the related ratios for phenotypic variations ranged from 3.04% to 47.14%. Interestingly, nine SSR markers were detected in more than one environmental condition. In addition, 14 SSR markers were co-associated with two or more different traits. It was noteworthy that NAU4860 and NAU5077 markers detected at least in two environments were simultaneously associated with three fiber quality traits (uniformity index, specific breaking strength and micronaire value). In conclusion, these findings provide new insights into the population structure and genetic exchange pattern of cultivated cotton accessions. The quantitative trait loci of domesticated cotton identified will also be very useful for improvement of yield and fiber quality of cotton in molecular breeding programs.

19.
Theor Appl Genet ; 132(7): 1991-2002, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30982110

RESUMO

KEY MESSAGE: A genome-wide associated study identified six novel QTLs for lint percentage. Two candidate genes underlying this trait were also detected. Increasing lint percentage (LP) is a core goal of cotton breeding. To better understand the genetic basis of LP, a genome-wide association study (GWAS) was conducted using 276 upland cotton accessions planted in multiple environments and genotyped with a CottonSNP63K array. After filtering, 10,660 high-quality single-nucleotide polymorphisms (SNPs) were retained. Population structure, principal component and neighbor-joining phylogenetic tree analyses divided the accessions into two subpopulations. These results along with linkage disequilibrium decay indicated accessions were not highly structured and exhibited weak relatedness. GWAS uncovered 23 polymorphic SNPs and 15 QTLs significantly associated with LP, with six new QTLs identified. Two candidate genes, Gh_D05G0313 and Gh_D05G1124, both contained one significant SNP, highly expressed during ovule and fiber development stages, implying that the two genes may act as the most promising regulators of LP. Furthermore, the phenotypic value of LP was found to be positively correlated with the number of favorable SNP alleles. These favorable alleles for LP identified in the study may be useful for improving lint yield.


Assuntos
Fibra de Algodão , Gossypium/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Estudos de Associação Genética , Genética Populacional , Genoma de Planta , Genótipo , Desequilíbrio de Ligação , Fenótipo , Melhoramento Vegetal
20.
J Integr Plant Biol ; 61(8): 929-942, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30253066

RESUMO

Commercial varieties of upland cotton (Gossypium hirsutum) have undergone extensive breeding for agronomic traits, such as fiber quality, disease resistance, and yield. Cotton breeding programs have widely used Chinese upland cotton source germplasm (CUCSG) with excellent agronomic traits. A better understanding of the genetic diversity and genomic characteristics of these accessions could accelerate the identification of desirable alleles. Here, we analyzed 10,522 high-quality single-nucleotide polymorphisms (SNP) with the CottonSNP63K microarray in 137 cotton accessions (including 12 hybrids of upland cotton). These data were used to investigate the genetic diversity, population structure, and genomic characteristics of each population and the contribution of these loci to heterosis. Three subgroups were identified, in agreement with their known pedigrees, geographical distributions, and times since introduction. For each group, we identified lineage-specific genomic divergence regions, which potentially harbor key alleles that determine the characteristics of each group, such as early maturity-related loci. Investigation of the distribution of heterozygous loci, among 12 commercial cotton hybrids, revealed a potential role for these regions in heterosis. Our study provides insight into the population structure of upland cotton germplasm. Furthermore, the overlap between lineage-specific regions and heterozygous loci, in the high-yield hybrids, suggests a role for these regions in cotton heterosis.


Assuntos
Gossypium/fisiologia , Alelos , Genômica , Genótipo , Gossypium/genética , Vigor Híbrido/genética , Vigor Híbrido/fisiologia , Melhoramento Vegetal , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA