Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(17)2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39275735

RESUMO

Raman spectroscopy with the advantages of the in situ and simultaneous detection of multi-components has been widely used in the identification and quantitative detection of gas. As a type of scattering spectroscopy, the detection sensitivity of Raman spectroscopy is relatively lower, mainly due to the low signal collection efficiency. This paper presents the design and assembly of a multi-channel cavity-enhanced Raman spectroscopy system, optimizing the structure of the sample pool to reduce the loss of the laser and increase the excitation intensity of the Raman signals. Moreover, three channels are used to collect Raman signals to increase the signal collection efficiency for improving the detection sensitivity. The results showed that the limits of detection for the CH4, H2, CO2, O2, and N2 gases were calculated to be 3.1, 34.9, 17.9, 27, and 35.2 ppm, respectively. The established calibration curves showed that the correlation coefficients were all greater than 0.999, indicating an excellent linear correlation and high level of reliability. Meanwhile, under long-time integration detection, the Raman signals of CH4, H2, and CO2 could be clearly distinguished at the concentrations of 10, 10, and 50 ppm, respectively. The results indicated that the designed Raman system possesses broad application prospects in complex field environments.

2.
Anal Chim Acta ; 1259: 341200, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37100477

RESUMO

The qualitative and quantitative analysis of gas components extracted from drilling fluids during mud logging is essential for identifying drilling anomalies, reservoir characteristics, and hydrocarbon properties during oilfield recovery. Gas chromatography (GC) and gas mass spectrometers (GMS) are currently used for the online analysis of gases throughout the mud logging process. Nevertheless, these methods have limitations, including expensive equipment, high maintenance costs, and lengthy detection periods. Raman spectroscopy can be applied to the online quantification of gases at mud logging sites due to its in-situ analysis, high resolution, and rapid detection. However, laser power fluctuations, field vibrations, and the overlapping of characteristic peaks of different gases in the existing online detection system of Raman spectroscopy can affect the quantitative accuracy of the model. For these reasons, a gas Raman spectroscopy system with a high reliability, low detection limits, and increased sensitivity has been designed and applied to the online quantification of gases in the mud logging process. The near-concentric cavity structure is used to improve the signal acquisition module in the gas Raman spectroscopic system, thus enhancing the Raman spectral signal of the gases. One-dimensional convolutional neural networks (1D-CNN) combined with long- and short-term memory networks (LSTM) are applied to construct quantitative models based on the continuous acquisition of Raman spectra of gas mixtures. In addition, the attention mechanism is used to futher improve the quantitative model performance. The results indicated that our proposed method has the capability to continuously on-line detect 10 hydrocarbon and non-hydrocarbon gases in the mud logging process. The limitation of detection (LOD) for different gas components based on the proposed method are in the range of 0.0035%-0.0223%. Based on the proposed CNN-LSTM-AM model, the average detection errors of different gas components range from 0.899% to 3.521%, and their maximum detection errors range from 2.532% to 11.922%. These results demonstrate that our proposed method has a high accuracy, low deviation, and good stability and can be applied to the on-line gas analysis process in the mud logging field.

3.
Sensors (Basel) ; 21(14)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34300571

RESUMO

The detection of dissolved gases in seawater plays an important role in oceanic observations and exploration. As a potential technique for oceanic applications, Raman spectroscopy has been successfully applied in hydrothermal vents and cold seep fluids, but it has not yet been used in common seawater due to the technique's lower sensitivity. In this work, we present a highly sensitive underwater in situ Raman spectroscopy system for dissolved gas detection in common seawater. Considering the difficulty of underwater degassing and in situ detection, we designed a near-concentric cavity to improve the sensitivity, with a miniature gas sample chamber featuring an inner volume of 1 mL placed inside the cavity to reach equilibrium in a short period of time. According to the 3σ criteria, the detection limits of this system for CO2, O2, and H2 were calculated to be 72.8, 44.0, and 27.7 ppm, respectively. Using a hollow fiber membrane degasser with a large surface area, the CO2 signal was found to be clearly visible in 30 s at a flow rate of 550 mL/min. Moreover, we deployed the system in Qingdao's offshore seawater, and the field test showed that this system is capable of successfully detecting in situ the multiple gases dissolved in the seawater simultaneously.


Assuntos
Gases , Análise Espectral Raman , Água do Mar
4.
Sensors (Basel) ; 21(10)2021 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-34069644

RESUMO

Multiple reflection has been proven to be an effective method to enhance the gas detection sensitivity of Raman spectroscopy, while Raman gas probes based on the multiple reflection principle have been rarely reported on. In this paper, a multi-reflection, cavity enhanced Raman spectroscopy (CERS) probe was developed and used for in situ multi-component gas detection. Owing to signal transmission through optical fibers and the miniaturization of multi-reflection cavity, the CERS probe exhibited the advantages of in situ detection and higher detection sensitivity. Compared with the conventional, backscattering Raman layout, the CERS probe showed a better performance for the detection of weak signals with a relatively lower background. According to the 3σ criteria, the detection limits of this CERS probe for methane, hydrogen, carbon dioxide and water vapor are calculated to be 44.5 ppm, 192.9 ppm, 317.5 ppm and 0.67%, respectively. The results presented the development of this CERS probe as having great potential to provide a new method for industrial, multi-component online gas detection.

5.
Sensors (Basel) ; 21(11)2021 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-34072727

RESUMO

Raman spectroscopy has the advantages of multi-component detection, with a simple device and wide concentration ranges, and it has been applied in environmental monitoring and gas logging. However, its low sensitivity has limited its further applications. In fact, the Raman signal is not weak, but the utilization efficiency of the Raman signal is low, and most of the signal is wasted. Given this, in this paper we report a cavity-enhanced multi-channel gas Raman spectrometer with an eight-sided cuvette. First, we simulated the Raman scattering intensity at angles from 30 degrees to 150 degrees. The simulation results showed that the signal intensity at an angle of 45° is 1.4 times that observed at 90°. Based on the simulation results, we designed a three-channel sample cell for higher sensitivity. The results of these experiments showed that the sensitivity could be increased by adding all signal together, and the limit of detection (LOD) for CO2 was 75 ppm, which is better than that of each channel. This paper thus presents a new method to enhance the Raman signal, which can be used in field applications.

6.
Sensors (Basel) ; 21(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801410

RESUMO

Monitoring of CO2 column concentrations is valuable for atmospheric research. A mobile open-path system was developed based on tunable diode laser absorption spectroscopy (TDLAS) to measure atmospheric CO2 column concentrations. A laser beam was emitted downward from a distributed feedback diode laser at 2 µm and then reflected by the retroreflector array on the ground. We measured the CO2 column concentrations over the 20 and 110 m long vertical path. Several single-point sensors were distributed at different heights to provide comparative measurements for the open-path TDLAS system. The results showed that the minimum detection limit of system was 0.52 ppm. Some similarities were observed in trends from the open-path TDLAS system and these sensors, but the average of these sensors was more consistent with the open-path TDLAS system values than the single-point measurement. These field measurements demonstrate the feasibility of open-path TDLAS for measuring the CO2 column concentration and monitoring carbon emission over large areas.

7.
Appl Opt ; 58(10): 2630-2634, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045063

RESUMO

In recent years, Raman spectroscopy techniques have been successfully applied to the area of deep-sea exploration. However, there are still some problems impeding the further application of Raman systems. For example, the large size of an underwater Raman system makes it difficult to deploy on the underwater vehicle. Meanwhile, the sensitivity is often a disadvantage, requiring improvement for detecting more trace components. To solve these problems, a new compact deep-sea in situ Raman spectroscopy system is presented in this paper. The whole system weighs 60 kg and is housed in an L800 mm×ϕ258 mm pressure vessel with an optical window on the front end cap. The main components include a 532 nm Nd:YAG laser, an optics module, a high-throughput spectrograph with 0∼4900 cm-1 spectral range and 8 cm-1 spectral resolution, a TEC-cooled 2000 pixel×256 pixel CCD detector, a PC104 embedded computer, and an electronics module. To evaluate the performance of the newly developed Raman system, systematic experiments have been carried out with solutions in laboratory, and the results have shown that the system limit of detection of SO42- is 0.4 mmol/L. The Raman system has been successfully deployed on a remote-operated vehicle on the Kexue research vessel in June 2015. The typical in situ detection results are presented in this paper, and it is shown that the Raman system is capable of detecting the Raman signal of SO42- and fluorescence of chlorophyll a (chl-a) and chromophoric dissolved organic matter (CDOM) in seawater. With 500 spectra accumulations and some data processing, the Raman signal of HCO3- is obtained. This is the first report of direct measurement of HCO3- by Raman system in in situ experiments. After further optimization, it is hoped to apply the Raman system in seafloor observation networks for long-time carbon cycling research.

8.
Sensors (Basel) ; 17(12)2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-29194357

RESUMO

Raman spectroscopy has great potential as a tool in a variety of hydrothermal science applications. However, its low sensitivity has limited its use in common sea areas. In this paper, we develop a near-concentric cavity-enhanced Raman spectroscopy system to directly detect bicarbonate in seawater for the first time. With the aid of this near-concentric cavity-enhanced Raman spectroscopy system, a significant enhancement in HCO3- detection has been achieved. The obtained limit of detection (LOD) is determined to be 0.37 mmol/L-much lower than the typical concentration of HCO3- in seawater. By introducing a specially developed data processing scheme, the weak HCO3- signal is extracted from the strong sulfate signal background, hence a quantitative analysis with R² of 0.951 is made possible. Based on the spectra taken from deep sea seawater sampling, the concentration of HCO3- has been determined to be 1.91 mmol/L, with a relative error of 2.1% from the reported value (1.95 mmol/L) of seawater in the ocean. It is expected that the near-concentric cavity-enhanced Raman spectroscopy system could be developed and used for in-situ ocean observation in the near future.

9.
Appl Opt ; 55(27): 7744-8, 2016 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-27661606

RESUMO

The detection of dissolved gases in seawater plays an important role in ocean observation and exploration. As a potential technique for oceanic applications, Raman spectroscopy has already proved its advantages in the simultaneous detection of multiple species during previous deep-sea explorations. Due to the low sensitivity of conventional Raman measurements, there have been many reports of Raman applications on direct seawater detection in high-concentration areas, but few on undersea dissolved gas detection. In this work, we have presented a highly sensitive Raman spectroscopy (HSRS) system with a special designed gas chamber for small amounts of underwater gas extraction. Systematic experiments have been carried out for system evaluation, and the results have shown that the Raman signals obtained by the innovation of a near-concentric cavity was about 21 times stronger than those of conventional side-scattering Raman measurements. Based on this system, we have achieved a low limit of detection of 2.32 and 0.44 µmol/L for CO2 and CH4, respectively, in the lab. A test-out experiment has also been accomplished with a gas-liquid separator coupled to the Raman system, and signals of O2 and CO2 were detected after 1 h of degasification. This system may show potential for gas detection in water, and further work would be done for the improvement of in situ detection.

10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(1): 96-8, 2016 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-27228748

RESUMO

Raman spectroscopy has been widely used for gas detection due to the advantages of simultaneous multiple species recognition, rapid analysis, and no sample preparation, etc. Low sensitivity is still a great limitation for Raman application. In this work a Raman system based on a hollow core optical fiber (HCOF) was built and the detection sensitivity for the gas was significantly improved. Also a comparison was carried out between the HCOF Raman system and back-scattering Raman system. The obtained results indicated that the HCOF Raman system could well enhance the signal while also for the background and noise. Using HCOF system, 60 folds signal enhancement was achieved with SNR improvement of 6 times for the N2 and O2 in air when comparing to the back-scattering system. While for the same signal intensity, with HCOF system the exposure time was well shortened to 1/60 and the noise was decreased to 1/2 than the back-scattering system.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 35(3): 645-8, 2015 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-26117872

RESUMO

The detection of dissolved gases in seawater plays an important role in ocean observation and exploration. Raman spectroscopy has a great advantage in simultaneous multiple species detection and is thus regarded as a favorable choice for ocean application. However, its sensitivity remains insufficient, and a demand in enhancements is called! for before putting Raman spectroscopy to actual use in marine studies In this work, we developed a near-concentric cavity, in which laser beam could be trapped and reflected back and forth, for the purpose of intensifying Raman signals. The factors that would influence Raman signals were taken into account. The result show that the smaller angle between collection direction and optical axis of reflection mirror, the stronger the signal and signal to noise ratio (SNR) is. With a collection angle of 30 degrees, our Near-concentric Cavity System managed to raise the SNR to a figure about 16 times larger than that of common methods applying 90 degrees. Moreover, the alignment pattern in our system made it possible to excel concentric cavity with a 3 times larger SNR. Compared with the single-pass Raman signal, the signal intensity of our near-concentric cavity was up to 70 times enhanced. According to the obtained results of CO2 measurement, it can be seen that the new system provides a limit of detection(LOD) for CO2 about 0.19 mg x L(-1) using 3-σ criterion standard, and the LOD of 11.5 µg x L(-1) for CH4 was evaluated with the theoretical cross section values of CO2 and CH4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA