Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chin J Cancer Res ; 36(2): 114-123, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38751440

RESUMO

Objective: Unresectable hepatocellular carcinoma (uHCC) continues to pose effective treatment options. The objective of this study was to assess the efficacy and safety of combining low-dose cyclophosphamide with lenvatinib, pembrolizumab and transarterial chemoembolization (TACE) for the treatment of uHCC. Methods: From February 2022 to November 2023, a total of 40 patients diagnosed with uHCC were enrolled in this small-dose, single-center, single-arm, prospective study. They received a combined treatment of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE. Study endpoints included progression-free survival (PFS), objective response rate (ORR), and safety assessment. Tumor response was assessed using the modified Response Evaluation Criteria in Solid Tumors (mRECIST), while survival analysis was conducted through Kaplan-Meier curve analysis for overall survival (OS) and PFS. Adverse events (AEs) were evaluated according to the National Cancer Institute Common Terminology Criteria for Adverse Events (version 5.0). Results: A total of 34 patients were included in the study. The median follow-up duration was 11.2 [95% confidence interval (95% CI), 5.3-14.6] months, and the median PFS (mPFS) was 15.5 (95% CI, 5.4-NA) months. Median OS (mOS) was not attained during the study period. The ORR was 55.9%, and the disease control rate (DCR) was 70.6%. AEs were reported in 27 (79.4%) patients. The most frequently reported AEs (with an incidence rate >10%) included abnormal liver function (52.9%), abdominal pain (44.1%), abdominal distension and constipation (29.4%), hypertension (20.6%), leukopenia (17.6%), constipation (17.6%), ascites (14.7%), and insomnia (14.7%). Abnormal liver function (14.7%) had the most common grade 3 or higher AEs. Conclusions: A combination of low-dose cyclophosphamide with lenvatinib, pembrolizumab, and TACE is safe and effective for uHCC, showcasing a promising therapeutic strategy for managing uHCC.

2.
World J Gastrointest Surg ; 16(1): 205-214, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38328333

RESUMO

BACKGROUND: Primary liver cancer is a malignant tumor with a high recurrence rate that significantly affects patient prognosis. Postoperative adjuvant external radiation therapy (RT) has been shown to effectively prevent recurrence after liver cancer resection. However, there are multiple RT techniques available, and the differential effects of these techniques in preventing postoperative liver cancer recurrence require further investigation. AIM: To assess the advantages and disadvantages of various adjuvant external RT methods after liver resection based on overall survival (OS) and disease-free survival (DFS) and to determine the optimal strategy. METHODS: This study involved network meta-analyses and followed the PRISMA guidelines. The data of qualified studies published before July 10, 2023, were collected from PubMed, Embase, the Web of Science, and the Cochrane Library. We included relevant studies on postoperative external beam RT after liver resection that had OS and DFS as the primary endpoints. The magnitudes of the effects were determined using risk ratios with 95% confidential intervals. The results were analyzed using R software and STATA software. RESULTS: A total of 12 studies, including 1265 patients with hepatocellular carcinoma (HCC) after liver resection, were included in this study. There was no significant heterogeneity in the direct paired comparisons, and there were no significant differences in the inclusion or exclusion criteria, intervention measures, or outcome indicators, meeting the assumptions of heterogeneity and transitivity. OS analysis revealed that patients who underwent stereotactic body radiotherapy (SBRT) after resection had longer OS than those who underwent intensity modulated radiotherapy (IMRT) or 3-dimensional conformal RT (3D-CRT). DFS analysis revealed that patients who underwent 3D-CRT after resection had the longest DFS. Patients who underwent IMRT after resection had longer OS than those who underwent 3D-CRT and longer DFS than those who underwent SBRT. CONCLUSION: HCC patients who undergo liver cancer resection must consider distinct advantages and disadvantages when choosing between SBRT and 3D-CRT. IMRT, a RT technique that is associated with longer OS than 3D-CRT and longer DFS than SBRT, may be a preferred option.

3.
Small ; 20(4): e2304273, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37705459

RESUMO

Considering the direct influence of substrate surface nature on perovskite (PVK) film growth, buried interfacial engineering is crucial to obtain ideal perovskite solar cells (PSCs). Herein, 1-(3-aminopropyl)-imidazole (API) is introduced at polytriarylamine (PTAA)/PVK interface to modulate the bottom property of PVK. First, the introduction of API improves the growth of PVK grains and reduces the Pb2+ defects and residual PbI2 present at the bottom of the film, contributing to the acquisition of high-quality PVK film. Besides, the presence of API can optimize the energy structure between PVK and PTAA, which facilitates the interfacial charge transfer. Density functional theory (DFT) reveals that the electron donor unit (R-C ═ N) of the API prefers to bind with Pb2+ traps at the PVK interface, while the formation of hydrogen bonds between the R-NH2 of API and I- strengthens the above binding ability. Consequently, the optimum API-treated inverted formamidinium-cesium (FA/Cs) PSCs yields a champion power conversion efficiency (PCE) of 22.02% and exhibited favorable stability.

4.
Small ; : e2309033, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-38054630

RESUMO

High-quality perovskite absorption layer is the fundamental basis for efficient and stable perovskite solar cells (PSCs). Due to the ionic nature of perovskite components, plentiful charged defects and suspension bonds remain on the surface of perovskite grains after continuous high-temperature annealing. Here, the complex initiated by the introduction of a multifunctional imidazolidinyl urea (IU) additive into the PbI2 precursor solution could serve as nucleation sites and crystallization templates for perovskite crystals to optimize the growth of high-quality perovskite films. By anchoring at the grain boundaries of perovskite films, IU molecules could passivate various types of defects, improve the hydrophobic properties, and inhibit lead leakage. Attributed to reduced defect density, improved charge transport, and inhibited α-FAPbI3 transition, the PSCs prepared based on IU additives achieved a champion power conversion efficiency of 23.18% (21.51% for the control PSCs) with negligible hysteresis and satisfactory stability.

5.
Int J Biol Sci ; 19(12): 3678-3693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37564197

RESUMO

Long non-coding RNAs have been reported to play a crucial role in tumor progression in hepatocellular carcinoma (HCC). Lnc-ZEB2-19 has been validated to be deficiently expressed in HCC. However, the capabilities and underlying mechanisms of lnc-ZEB2-19 remain uncertain. In this study, we verified that the downregulation of lnc-ZEB2-19 was prevalent in HCC and significantly correlated with the unfavorable prognosis. Further in vitro and in vivo verified that lnc-ZEB2-19 notably inhibited the proliferation, metastasis, stemness, and lenvatinib resistance (LR) of HCC cells. Mechanistically, lnc-ZEB2-19 inhibited HCC progression and LR by specifically binding to transformer 2α (TRA2A) and promoting its degradation, which resulted in the instability of RSPH14 mRNA, leading to the downregulation of Rela(p65) and p-Rela(p-p65). Furthermore, rescue assays showed that silencing RSPH14 partially restrained the effect of knockdown expression of lnc-ZEB2-19 on HCC cell metastatic ability and stemness. The findings describe a novel regulatory axis, lnc-ZEB2-19/TRA2A/RSPH14, downregulating the nuclear factor kappa B to inhibit HCC progression and LR.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , NF-kappa B/genética , Transdução de Sinais/genética , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Resistencia a Medicamentos Antineoplásicos , RNA Longo não Codificante/genética
6.
Chin J Cancer Res ; 35(3): 266-282, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37440829

RESUMO

Primary liver cancer is a significant health problem worldwide. Hepatocellular carcinoma (HCC) is the main pathological type of primary liver cancer, accounting for 75%-85% of cases. In recent years, radiotherapy has become an emerging treatment for HCC and is effective for various stages of HCC. However, radiosensitivity of liver cancer cells has a significant effect on the efficacy of radiotherapy and is regulated by various factors. How to increase radiosensitivity and improve the therapeutic effects of radiotherapy require further exploration. This review summarizes the recent research progress on the mechanisms affecting sensitivity to radiotherapy, including epigenetics, transportation and metabolism, regulated cell death pathways, the microenvironment, and redox status, as well as the effect of nanoparticles on the radiosensitivity of liver cancer. It is expected to provide more effective strategies and methods for clinical treatment of liver cancer by radiotherapy.

7.
Sci Bull (Beijing) ; 68(7): 698-705, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36931915

RESUMO

Epitaxially grown photodiodes are the foundation of infrared photodetection technology; however, their rigid structure and limited area scaling limit their use in advanced applications. Colloidal-quantum-dot (CQD) infrared photodiodes have increased active areas through solution processing, and are thus potential candidates for large-area flexible photodetection, but these large-area photodiodes have disadvantages such as large dark current density, poor homogeneity, and poor stability. Therefore, this study established a fabrication strategy for large-area flexible CQD photodiodes that involves introducing polyimide to CQD ink to improve CQD passivation, monodisperse ink persistence, and film morphology. The resulting CQD photodiodes exhibited reduced dark current density and improved homogeneity and work stability. Furthermore, the as-prepared photodiodes exhibited a detectivity (D*) of greater than 1013 Jones, which was higher than other reported CQD photodetectors. The CQD photodiodes developed in this study can be used for wearable photoplethysmogram (PPG) signal measurement under ambient light at reduced cost and power consumption.

8.
Entropy (Basel) ; 25(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36673311

RESUMO

Ion bombardment (IB) is a promising nanofabrication tool for self-organized nanostructures. When ions bombard a nominally flat solid surface, self-organized nanoripples can be induced on the irradiated target surface, which are called intrinsic nanoripples of the target material. The degree of ordering of nanoripples is an outstanding issue to be overcome, similar to other self-organization methods. In this study, the IB-induced nanoripples on bilayer systems with enhanced quality are revisited from the perspective of guided self-organization. First, power spectral density (PSD) entropy is introduced to evaluate the degree of ordering of the irradiated nanoripples, which is calculated based on the PSD curve of an atomic force microscopy image (i.e., the Fourier transform of the surface height. The PSD entropy can characterize the degree of ordering of nanoripples). The lower the PSD entropy of the nanoripples is, the higher the degree of ordering of the nanoripples. Second, to deepen the understanding of the enhanced quality of nanoripples on bilayer systems, the temporal evolution of the nanoripples on the photoresist (PR)/antireflection coating (ARC) and Au/ARC bilayer systems are compared with those of single PR and ARC layers. Finally, we demonstrate that a series of intrinsic IB-induced nanoripples on the top layer may act as a kind of self-organized template to guide the development of another series of latent IB-induced nanoripples on the underlying layer, aiming at improving the ripple ordering. The template with a self-organized nanostructure may alleviate the critical requirement for periodic templates with a small period of ~100 nm. The work may also provide inspiration for guided self-organization in other fields.

9.
Opt Express ; 30(26): 47440-47451, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558672

RESUMO

Triplet generation by quantum dots (QDs)-sensitized molecules emerges great potential in many applications. However, the mechanism of triplet energy transfer (TET) is still fuzzy especially due to the complicated energy level alignment of QDs and molecules or trap states in QDs. Here, CdSe QDs and 5-tetracene carboxylic acid (TCA) molecules are selected as the triplet donor and acceptor, respectively, to form a TET system. By tuning the band gap of CdSe, the CdSe-TCA complex is exactly designed to present a Type-II like alignment of relative energetics. Coupling the transient absorption and time-resolved fluorescence spectra, all carrier dynamics is distinctly elucidated. Quantitative analysis demonstrates that hole transfer persisting for ∼ 2 ps outcompetes all other carrier dynamics such as electron trapping (∼100 ps level), charge recombination (∼ 5 ns) and the so-called "back transfer charge recombination" (∼50 ns), and thus leads to a hole-transfer-mediated TET process. The low TET yield (∼34.0%) ascribed to electron behavior can be further improved if electron trapping and charge recombination are efficiently suppressed. The observation on distinguishable carrier dynamics attributed to legitimate design of energy level alignment facilitates a better understanding of the TET mechanism from QDs to molecules as well as further development of photoelectronic devices based on such TET systems.

10.
Opt Express ; 30(13): 23695-23703, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36225044

RESUMO

Owing to the broad spectral response and flexible choices of donors and acceptors, fluorescence resonance energy transfer (FRET) system based on quantum dots (QDs) is a potential candidate for enhancing performance of solar cells and other optoelectronic devices. Thus it is necessary to develop such FRET systems with high efficiency and understand the involved photophysical dynamics. Here, with type I CuInS2@ZnS core-shell quantum dots as the energy donor, series of CuInS2@ZnS-SQ complexes are synthesized by adjusting the acceptor (squaric acid, SQ) concentration. The FRET dynamics of the samples is systematically investigated by virtue of steady-state emission, time-resolved fluorescence decay, and transient absorption measurements. The experimental results display a positive correlation between the energy transfer efficient (η). The best energy transfer efficient achieved from experimental data is 52%. This work provides better understanding of the photophysical dynamics in similar complexes and facilitates further development of new photoelectronic devices based on relevant FRET systems.

11.
Ann Transl Med ; 10(14): 769, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35965793

RESUMO

Background: Circular RNAs (circRNAs) are important for the process of cancer initiation and progression. However, the role of circRNAs in hepatocellular carcinoma (HCC) remains incompletely understood. Therefore, we further explored the expression network of circRNAs in HCC. Methods: Whole-transcriptome microarrays of HCC and paired normal liver tissues were obtained from the Gene Expression Omnibus (GEO) database. The structures of tumor-associated circRNAs were acquired by the Cancer-Specific CircRNA Database (CSCD). StarBase, circBank, and R packages (miRNAtap and multiMiR) were used to predict miRNA targets of circRNAs and downstream molecules of miRNAs. Expression relationships between RNA-RNA interactions were evaluated by data from The Cancer Genome Atlas (TCGA) and GEO databases. ClusterProfiler and DOSE R packages were used for pathway enrichment to explore the biological functions of potential target genes. Finally, a possible circRNA-miRNA-mRNA regulatory network was established based on the competing endogenous RNA (ceRNA) hypothesis. Results: The differentially expressed circRNAs (DECs) were matched with cancer-specific circRNAs in the CSCD database and a screening analysis was performed to obtain 5 cancer-specific circRNAs. A total of 329 possible target miRNAs for 5 cancer-specific circRNAs were predicted by the circBank database, and intersection analysis with differentially expressed miRNAs (DEmiRNAs) revealed that miR-6746-3p and miR-96-5p were the two most suitable miRNAs targets for our selected circRNAs. Further expression verification and prediction of base complementary paired binding sites demonstrated the hsa_circ_0039466/miR-96-5p axis as a crucial pathway in HCC. Next, we found that FOXO1 and LEPR were two potential downstream molecules of the hsa_circ_0039466/miR-96-5p axis through target gene prediction analysis, differential expression analysis, and intersection analysis. The pathway enrichment results suggested that the hsa_circ_0039466/miR-96-5p axis affects the progression and outcome of HCC through the insulin resistance pathway. Finally, through multi-data crossover analysis and data analysis of HCC samples further confirmed the existence of the hsa_circ_0039466/miR-96-5p/FOXO1 ceRNA regulatory network and that the axis was closely related to clinical stage. Conclusions: hsa_circ_0039466 facilitates the expression of FOXO1 by sponging miR-96-5p, and ultimately inhibits tumor progression. These results provide a theoretical basis for further understanding of the gene expression network of HCC.

12.
J Phys Chem Lett ; 13(14): 3188-3196, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35377654

RESUMO

The inclusion of potassium in perovskite solar cells (PSCs) has been widely demonstrated to enhance the power conversion efficiency and eliminate the hysteresis effect. However, the effects of the locations K+ cations on the charge-carrier dynamics remain unknown with respect to achieving a more delicate passivation design for perovskite interfaces and bulk films. Herein, we employ the combined electrical and ultrafast dynamics analysis for the perovskite film to distinguish the effects of bulk doping and interfacial passivation of the potassium cation. Transient absorption spectroscopy indicates an enhancement of charge-carrier diffusion for K+-doped PSCs (from 808 to 605 ps), and charge-carrier transfer is significantly promoted by K+ interface passivation (from 12.34 to 1.23 ps) compared with that of the pristine sample. Importantly, K+ doping can suppress the formation of wide bandgap perovskite phases (e.g., FAPbI0.6Br2.4 and FAPbI1.05Br1.95) that generate an energy barrier on the charge-carrier transport channel.

14.
Nat Mater ; 21(2): 210-216, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34764429

RESUMO

X-ray detection, which plays an important role in medical and industrial fields, usually relies on inorganic scintillators to convert X-rays to visible photons; although several high-quantum-yield fluorescent molecules have been tested as scintillators, they are generally less efficient. High-energy radiation can ionize molecules and create secondary electrons and ions. As a result, a high fraction of triplet states is generated, which act as scintillation loss channels. Here we found that X-ray-induced triplet excitons can be exploited for emission through very rapid, thermally activated up-conversion. We report scintillators based on three thermally activated delayed fluorescence molecules with different emission bands, which showed significantly higher efficiency than conventional anthracene-based scintillators. X-ray imaging with 16.6 line pairs mm-1 resolution was also demonstrated. These results highlight the importance of efficient and prompt harvesting of triplet excitons for efficient X-ray scintillation and radiation detection.


Assuntos
Elétrons , Fótons , Fluorescência , Raios X
15.
J Am Chem Soc ; 143(41): 17059-17067, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34609874

RESUMO

The boundary between molecular and metallic gold nanoclusters is of special interest. The difficulty in obtaining atomically precise nanoclusters larger than 2 nm limits the determination of such a boundary. The synthesis and total structural determination of the largest all-alkynyl-protected gold nanocluster (Ph4P)6[Au156(C≡CR)60] (R = 4-CF3C6H4-) (Au156) are reported. It presents an ideal platform for studying the relationship between the structure and the metallic nature. Au156 has a rod shape with the length and width of the kernel being 2.38 and 2.04 nm, respectively. The cluster contains a concentric Au126 core structure (Au46@Au50@Au30) protected by 30 linear RC≡C-Au-C≡CR staple motifs. It is interesting that Au156 displays multiple excitonic peaks in the steady-state absorption spectrum (molecular) and pump-power-dependent excited-state dynamics as revealed in the transient absorption spectrum (metallic), which indicates that Au156 is a critical crossover cluster for the transition from molecular to metallic state. Au156 is the smallest-sized gold nanocluster showing metal-like electron dynamics, and it is recognized that the cluster shape is one of the important factors determining the molecular or metallic nature of a gold nanocluster.

16.
Nanotechnology ; 32(38)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34077916

RESUMO

Ion bombardment (IB) is a promising nanofabrication technique for producing nanoripples. A critical issue that restricts the application of IB is the limited quality of IB-induced nanoripples. Photoresist (PR) and antireflection coating (ARC) are of technological relevance for lithographic exposure processes. Moreover, to improve the quality of IB-induced self-organized nanoripples, in this study, a PR/ARC bilayer was bombarded at an incidence angle of 50°. The surface normalized defect density and power spectral density, obtained via scanning atomic force microscopy, indicate the superiority of the PR/ARC bilayer nanoripples over those of single PR or ARC layers. The growth mechanism of the improved nanoripples, deciphered via the temporal evolution of the morphology, involves the following processes: (i) formation of a well-grown IB-induced nanoripple prepattern on the PR, (ii) transfer of nanoripples from the PR to the ARC, forming an initial ARC nanoripple morphology for subsequent IB, and (iii) conversion of the initial nonuniform ARC nanoripples into uniform nanoripples. In this unique method, the angle of ion-incidence should be chosen so that ripples form on both PR and ARC films. Overall, this method facilitates nanoripple improvement, including prepattern fabrication for guiding nanoripple growth and sustainable nanoripple development via a single IB. Thus, the unique method presented in this study can aid in advancing academic research and also has potential applications in the field of IB-induced nanoripples.

17.
Opt Express ; 29(6): 9012-9020, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820339

RESUMO

Auger recombination is an ultrafast and unnegligible photophysical process in colloidal semiconductor quantum dots (QDs) due to competition with charge separation or radiative recombination processes, pivotal for their applications ranging from bio-labeling, light-emitting diodes, QD lasing to solar energy conversion. Among diverse QDs, ternary chalcopyrite is recently receiving significant attention for its heavy-metal free property and remarkable optical performance. Given deficient understanding of the Auger process for ternary chalcopyrite QDs, CuInS2 QDs with various sizes are synthesized as a representative and the bi-exciton lifetime (τBX) is derived by virtue of ultrafast time resolved absorption spectrum. The trend of τBX varying with size is consistent with the universal scaling of τBX versus QD volume (V): τBX = γV. The scaling factor γ is 6.6 ± 0.5 ps·nm-3 for CuInS2 QDs, and the bi-exciton Auger lifetime is 4-5 times slower than typical CdSe QDs with the same volume, suggesting reduced Auger recombination rate in ternary chalcopyrite. This work facilitates clearer understanding of Auger process and provides further insight for rational design of light-harvesting and emitting devices based on ternary chalcopyrite QDs.

18.
J Am Chem Soc ; 142(42): 18086-18092, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32985888

RESUMO

Great attention has been paid to nanoclusters having face-centered-cubic (fcc) metal kernels, because of the similarity of metal packing to that of bulk gold. So far, there is no precedent example of an all-alkynyl-protected fcc gold nanocluster with more than 100 gold atoms. We report the synthesis and total structure determination of an alkynyl-protected gold nanocluster [NEt3H]2[Au110(p-CF3C6H4C≡C)48] (Au110). It has an fcc Au86 kernel with 24 peripheral Au(C≡CR)2 staples. The Au86 kernel consists of six close packing layers in the pattern of Au6:Au16:Au21:Au21:Au16:Au6. Electronic absorption spectroscopy shows Au110 has a molecular-like discrete electronic structure, and transient absorption experiments reveal its nonmetallic nature.

19.
Sci Total Environ ; 674: 242-254, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31004900

RESUMO

Urban agglomeration has become the most salient feature of global urbanization in recent decades, while spatiotemporal patterns and evolution remain poorly understood in urban agglomerations, which limit the decision-makers to make more informed decisions to improve the regional environment. Here we selected one of the most rapidly urbanized regions in the world - Pearl River Delta Metropolitan Region (PRDR), located in southern China, as the case. Landsat images spanning from 1995 to 2015 were used to retrieve land surface temperature (LST). Four types of regional heat island (RHI) degree were defined for further analysis. Then multi-scale spatiotemporal patterns and characteristics of RHI were identified with the help of cloud-based computing, spatial and landscape analysis. We found that (1) traditional urban heat island (UHI) appears as an RHI on an urban agglomeration scale. In PRDR, we found RHI expended with increasing connectivity, especially in the estuary areas where isolated UHI gradually merged during the rapid urbanization. (2) The contribution of main cities in PRDR to RHI and the evolutionary trends and pattern, which is changed from a west-east to a southwest-northeast gradient, have been revealed. (3) Considering the scale effect and different RHI categories, we revealed that during the urbanization, the aggregation of the RHI is significant on a larger-scale, and the area of 4 °C ≤ Relative LST ≤ 8 °C is the stable and high-risk area, which provide scientific bases for the governance of the thermal environment on the regional scale. (4) The study also indicates the cooling effect of forests and water is better than that of grassland, while the cooling effect of grassland is uncertain. The methods and results of this study not only have implications on environmental planning and management in the PRDR but also provide useful insights into the thermal environment research and practice in other urban agglomerations.

20.
Pharmacol Rep ; 68(1): 7-11, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26721344

RESUMO

BACKGROUND: ß-Elemene is a natural anticancer compound extracted from the Chinese medicinal herb Curcuma Wenyujin. This study was done to determine the effect of ß-elemene on the apoptosis of rheumatoid arthritis fibroblast-like synoviocytes (RA-FLS) and associated molecular mechanisms. METHODS: RA-FLS were treated for 72h with ß-elemene at 10-200µg/ml and cell viability and apoptotic changes were examined. The involvement of reactive oxygen species (ROS) and mitogen-activated protein kinases (MAPKs) was checked. RESULTS: We found that ß-elemene significantly inhibited the viability and promoted apoptosis of RA-FLS in a concentration-dependent fashion. ß-Elemene-treated FLS showed a significant decline in mitochondrial membrane potential, an accumulation of cytochrome c in the cytosol, and increased activities of caspase-9 and caspase-3. ß-Elemene treatment caused an enhancement of p38 MAPK phosphorylation and ROS production. The pro-apoptotic activity of ß-elemene was significantly reversed by pretreatment with the p38 inhibitor SB203580 or ROS inhibitor N-acetyl-l-cysteine. CONCLUSIONS: Taken together, ß-elemene is effective in inducing mitochondrial apoptosis of RA-FLS, which is mediated through induction of ROS formation and p38 MAPK activation. ß-Elemene may thus have therapeutic benefits for RA.


Assuntos
Artrite Reumatoide/enzimologia , Fibroblastos/enzimologia , Espécies Reativas de Oxigênio/metabolismo , Sesquiterpenos/farmacologia , Membrana Sinovial/enzimologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Artrite Reumatoide/patologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Sesquiterpenos/química , Membrana Sinovial/efeitos dos fármacos , Membrana Sinovial/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...