Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Research (Wash D C) ; 6: 0210, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588618

RESUMO

An optical spectrometer is a basic spectral instrument that probes microscopic physical and chemical properties of macroscopic objects but generally suffers from difficulty in broadband time-resolved measurement. In this work, we report the creation of ultrabroadband white-light laser with a 3-dB bandwidth covering 385 to 1,080 nm, pulse energy of 1.07 mJ, and pulse duration of several hundred femtoseconds by passing 3-mJ pulse energy, 50-fs pulse duration Ti:Sapphire pulse laser through a cascaded fused silica plate and chirped periodically poled lithium niobate crystal. We utilize this unprecedented superflat, ultrabroadband, and intense femtosecond laser light source to build a single-shot (i.e., single-pulse) subpicosecond pulse laser ultraviolet-visible-near-infrared spectrometer and successfully measure various atomic and molecular absorption spectra. The single-shot ultrafast spectrometer may open up a frontier to monitor simultaneously the ultrafast dynamics of multiple physical and chemical processes in various microscopic systems.

2.
ACS Mater Au ; 2(5): 552-575, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36855623

RESUMO

Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.

3.
Nat Commun ; 10(1): 1789, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30996272

RESUMO

Carbon dots (CDs) have been studied for years as one of the most promising fluorescent nanomaterials. However, CDs with red or solid-state fluorescence are rarely reported. Herein, through a one-pot solvothermal treatment, hydrophobic CDs (H-CDs) with blue dispersed emission and red aggregation-induced emission are obtained. When water is introduced, the hydrophobic interaction leads to aggregation of the H-CDs. The formation of H-CD clusters induces the turning off of the blue emission, as the carbonized cores suffer from π-π stacking interactions, and the turning on of the red fluorescence, due to restriction of the surfaces' intramolecular rotation around disulfide bonds, which conforms to the aggregation-induced-emission phenomenon. This on-off fluorescence of the H-CDs is reversible when the H-CD powder is completely dissolved. Moreover, the H-CD solution dispersed in filter paper is nearly colorless. Finally, we develop a reversible two switch-mode luminescence ink for advanced anti-counterfeiting and dual-encryption.

4.
Nanoscale ; 10(13): 5997-6004, 2018 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-29542776

RESUMO

Different from their bulk counterparts, plasmonic molybdenum oxide nanomaterials display superior optical and electronic properties, but unfortunately, phase-controlled synthesis of molybdenum oxide nanomaterials with multifunctional performances still remains a challenge. To actualize this, a surfactant-free solvothermal strategy was proposed to fabricate molybdenum oxide nanomaterials with a tunable phase. Encouragingly, the as-prepared molybdenum dioxide nanoparticles (MoO2 NPs) exhibit intense near-infrared (NIR) absorption attributed to the localized surface plasmon resonance (LSPR) effect, which results in their application as a surface enhanced Raman scattering (SERS) substrate to detect trace amounts of molecular species including Rhodamine 6G (R6G), crystal violet (CV), IR-780 iodide (IR780) and methylene blue (MB). The detection limit was as low as 5 × 10-8 M and the maximum enhancement factor (EF) was up to 1.10 × 107, compared to other semiconductor nanostructures, the SERS sensitivity may be the best. Meanwhile, with the significant photothermal conversion efficiency up to 61.3%, the plasmonic MoO2 NPs could also be used as a photothermal therapy (PTT) agent for efficient photothermal ablation of cancer cells in vitro.


Assuntos
Nanopartículas Metálicas , Molibdênio/química , Óxidos/química , Fototerapia , Células Hep G2 , Humanos , Análise Espectral Raman , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA