Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Autophagy ; 20(6): 1314-1334, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38174993

RESUMO

Accumulating evidence suggests that cancer-associated fibroblast (CAF) macroautophagy/autophagy is crucial in tumor development and may be a therapeutic target for pancreatic ductal adenocarcinoma (PDAC). However, the role of CAF autophagy during immune surveillance and cancer immunotherapy is unclear. The present study revealed that the inhibition of CAF autophagy suppresses in vivo tumor development in immune-deficient xenografts. This deletion compromises anti-tumor immunity and anti-tumor efficacy both in vitro and in vivo by upregulating CD274/PDL1 levels in an immune-competent mouse model. A block in CAF autophagy reduced the production of IL6 (interleukin 6), disrupting high desmoplastic TME and decreasing USP14 expression at the transcription level in pancreatic cancer cells. We further identify USP14 as the post-translational factor responsible for downregulating CD274 expression by removing K63 linked-ubiquitination at the K280 residue. Finally, chloroquine diphosphate-loaded mesenchymal stem cell (MSC)-liposomes, by accurately targeting CAFs, inhibited CAF autophagy, improving the efficacy of immunochemotherapy to combat pancreatic cancer.Abbreviation: AIR: adaptive immune resistance; ATRA: all-trans-retinoicacid; CAF: cancer-associated fibroblast; CD274/PDL1: CD274 molecule; CM: conditioned medium; CQ: chloroquine diphosphate; CyTOF: Mass cytometry; FGF2/bFGF: fibroblast growth factor 2; ICB: immune checkpoint blockade; IF: immunofluorescence; IHC: immunohistochemistry; IP: immunoprecipitation; MS: mass spectrometer; MSC: mesenchymal stem cell; PDAC: pancreatic ductal adenocarcinoma; TEM: transmission electron microscopy; TILs: tumor infiltrating lymphocytes; TME: tumor microenvironment; USP14: ubiquitin specific peptidase 14.


Assuntos
Autofagia , Fibroblastos Associados a Câncer , Imunoterapia , Neoplasias Pancreáticas , Microambiente Tumoral , Autofagia/efeitos dos fármacos , Animais , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/tratamento farmacológico , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/efeitos dos fármacos , Humanos , Camundongos , Imunoterapia/métodos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Imunidade Adaptativa/efeitos dos fármacos , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/tratamento farmacológico , Antígeno B7-H1/metabolismo , Cloroquina/farmacologia , Cloroquina/uso terapêutico
2.
Biochim Biophys Acta Rev Cancer ; 1879(1): 189022, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37993001

RESUMO

Glucose metabolism is essential for the activation, differentiation and function of T cells and proper glucose metabolism is required to maintain effective T cell immunity. Dysregulation of glucose metabolism is a hallmark of cancer, and the tumour microenvironment (TME2) can create metabolic barriers in T cells that inhibit their anti-tumour immune function. Targeting glucose metabolism is a promising approach to improve the capacity of T cells in the TME. The efficacy of common immunotherapies, such as immune checkpoint inhibitors (ICIs3) and adoptive cell transfer (ACT4), can be limited by T-cell function, and the treatment itself can affect T-cell metabolism. Therefore, understanding the relationship between immunotherapy and T cell glucose metabolism helps to achieve more effective anti-tumour therapy. In this review, we provide an overview of T cell glucose metabolism and how T cell metabolic reprogramming in the TME regulates anti-tumour responses, briefly describe the metabolic patterns of T cells during ICI and ACT therapies, which suggest possible synergistic strategies.


Assuntos
Neoplasias , Linfócitos T , Humanos , Neoplasias/metabolismo , Imunoterapia , Imunoterapia Adotiva , Glucose/metabolismo , Microambiente Tumoral
3.
Comput Struct Biotechnol J ; 21: 5561-5582, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38034399

RESUMO

Hepatocellular carcinoma (HCC) is one of the most prevalent subtypes of primary liver cancer, with high mortality and poor prognosis. Immunotherapy has revolutionized treatment strategies for many cancers. However, only a subset of patients with HCC achieve satisfactory benefits from immunotherapy. Therefore, a reliable biomarker that could predict the prognosis and immunotherapy response in patients with HCC is urgently needed. Taurine plays an important role in many physiological processes. However, its participation in the occurrence and progression of liver cancer and regulation of the composition and function of various components of the immune microenvironment remains elusive. In this study, we identified and validated two heterogeneous subtypes of HCC with different taurine metabolic profiles, presenting distinct genomic features, clinicopathological characteristics, and immune landscapes, using multiple bulk transcriptome datasets. Subsequently, we constructed a risk model based on genes related to taurine metabolism to assess the prognosis, immune cell infiltration, immunotherapy response, and drug sensitivity of patients with HCC. The risk model was validated using several independent external cohorts and showed a robust predictive performance. In addition, we evaluated the expression patterns of taurine metabolism-related genes in the tumor microenvironment and the heterogeneity of taurine metabolism among cancer cells using a single-cell transcriptome. In conclusion, our study provides insights into the important role played by taurine metabolism in tumor progression and immune regulation. Furthermore, the risk model can serve as a biomarker to assess patient prognosis and immunotherapy response, potentially helping clinicians make more precise and personalized clinical decisions.

4.
Mol Ther ; 31(10): 2929-2947, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37515321

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to immune checkpoint blockade therapy, and negative feedback of tumor immune evasion might be partly responsible. We isolated CD8+ T cells and cultured them in vitro. Proteomics analysis was performed to compare changes in Panc02 cell lines cultured with conditioned medium, and leucine-rich repeat kinase 2 (LRRK2) was identified as a differential gene. LRRK2 expression was related to CD8+ T cell spatial distribution in PDAC clinical samples and upregulated by CD8+ T cells via interferon gamma (IFN-γ) simulation in vitro. Knockdown or pharmacological inhibition of LRRK2 activated an anti-pancreatic cancer immune response in mice, which meant that LRRK2 acted as an immunosuppressive gene. Mechanistically, LRRK2 phosphorylated PD-L1 at T210 to inhibit its ubiquitination-mediated proteasomal degradation. LRRK2 inhibition attenuated PD-1/PD-L1 blockade-mediated, T cell-induced upregulation of LRRK2/PD-L1, thus sensitizing the mice to anti-PD-L1 therapy. In addition, adenosylcobalamin, the activated form of vitamin B12, which was found to be a broad-spectrum inhibitor of LRRK2, could inhibit LRRK2 in vivo and sensitize PDAC to immunotherapy as well, which potentially endows LRRK2 inhibition with clinical translational value. Therefore, PD-L1 blockade combined with LRRK2 inhibition could be a novel therapy strategy for PDAC.

5.
Cancers (Basel) ; 15(8)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37190154

RESUMO

The traditional immune checkpoint blockade therapy benefits some patients with cancer, but elicits no response in certain cancers, such as pancreatic adenocarcinoma (PAAD); thus, novel checkpoints and effective targets are required. Here, we found that there was a higher Neuropilin (NRP) expression in tumor tissues as novel immune checkpoints, which was associated with poor prognosis and pessimistic responses to immune checkpoint blockade therapy. In the tumor microenvironment of PAAD samples, NRPs were widely expressed in tumor, immune and stromal cells. The relationship of NRPs with tumor immunological features in PAAD and pan-cancer was evaluated using bioinformatics methods; it was positively correlated with the infiltration of myeloid immune cells and the expression of most immune checkpoint genes. Bioinformatics analysis, in vitro and in vivo experiments suggested that NRPs exhibit potential immune-related and immune-independent pro-tumor effects. NRPs, especially NRP1, are attractive biomarkers and therapeutic targets for cancers, particularly PAAD.

6.
Oncogene ; 42(25): 2061-2073, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37156839

RESUMO

Highly desmoplastic and immunosuppressive tumor microenvironment (TME) in pancreatic ductal adenocarcinoma (PDAC) contributes to tumor progression and resistance to current therapies. Clues targeting the notorious stromal environment have offered hope for improving therapeutic response whereas the underlying mechanism remains unclear. Here, we find that prognostic microfibril associated protein 5 (MFAP5) is involved in activation of cancer-associated fibroblasts (CAFs). Inhibition of MFAP5highCAFs shows synergistic effect with gemcitabine-based chemotherapy and PD-L1-based immunotherapy. Mechanistically, MFAP5 deficiency in CAFs downregulates HAS2 and CXCL10 via MFAP5/RCN2/ERK/STAT1 axis, leading to angiogenesis, hyaluronic acid (HA) and collagens deposition reduction, cytotoxic T cells infiltration, and tumor cells apoptosis. Additionally, in vivo blockade of CXCL10 with AMG487 could partially reverse the pro-tumor effect from MFAP5 overexpression in CAFs and synergize with anti-PD-L1 antibody to enhance the immunotherapeutic effect. Therefore, targeting MFAP5highCAFs might be a potential adjuvant therapy to enhance the immunochemotherapy effect in PDAC via remodeling the desmoplastic and immunosuppressive microenvironment.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Fibroblastos Associados a Câncer/metabolismo , Microfibrilas/metabolismo , Microfibrilas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Proteínas/metabolismo , Imunoterapia , Microambiente Tumoral , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Pancreáticas
7.
Biomed Pharmacother ; 163: 114762, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37100015

RESUMO

Autophagy helps maintain energy homeostasis and protect cells from stress effects by selectively removing misfolded/polyubiquitylated proteins, lipids, and damaged mitochondria. Cancer-associated fibroblasts (CAFs) are cellular components of tumor microenvironment (TME). Autophagy in CAFs inhibits tumor development in the early stages; however, it has a tumor-promoting effect in advanced stages. In this review, we aimed to summarize the modulators responsible for the induction of autophagy in CAFs, such as hypoxia, nutrient deprivation, mitochondrial stress, and endoplasmic reticulum stress. In addition, we aimed to present autophagy-related signaling pathways in CAFs, and role of autophagy in CAF activation, tumor progression, tumor immune microenvironment. Autophagy in CAFs may be an emerging target for tumor therapy. In summary, autophagy in CAFs is regulated by a variety of modulators and can reshape tumor immune microenvironment, affecting tumor progression and treatment.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos/metabolismo , Neoplasias/patologia , Transdução de Sinais , Mitocôndrias/metabolismo , Microambiente Tumoral/fisiologia
8.
Cell Death Differ ; 30(2): 560-575, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36539510

RESUMO

Programmed death-1 (PD-1) and its ligand programmed death-ligand 1 (PD-L1) help tumor cells evade immune surveillance, and are regarded as important targets of anti-tumor immunotherapy. Post-translational modification of PD-L1 has potential value in immunosuppression. Here, we identified that ubiquitin-specific protease 8 (USP8) deubiquitinates PD-L1. Pancreatic cancer tissues exhibited significantly increased USP8 levels compared with those in normal tissues. Clinically, the expression of USP8 showed a significant association with the tumor-node-metastasis stage in multiple patient-derived cohorts of pancreatic cancer. Meanwhile, USP8 deficiency could reduce tumor invasion and migration and tumor size in an immunity-dependent manner, and improve anti-tumor immunogenicity. USP8 inhibitor pretreatment led to reduced tumorigenesis and immunocompetent mice with Usp8 knockdown tumors exhibited extended survival. Moreover, USP8 interacted positively with PD-L1 and upregulated its expression by inhibiting the ubiquitination-regulated proteasome degradation pathway in pancreatic cancer. Combination therapy with a USP8 inhibitor and anti-PD-L1 effectively suppressed pancreatic tumor growth by activation of cytotoxic T-cells and the anti-tumor immunity was mainly dependent on the PD-L1 pathway and CD8 + T cells. Our findings highlight the importance of targeting USP8, which can sensitize PD-L1-targeted pancreatic cancer to immunotherapy and might represent a novel therapeutic strategy to treat patients with pancreatic tumors in the future.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias Pancreáticas , Animais , Camundongos , Imunoterapia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteases Específicas de Ubiquitina , Neoplasias Pancreáticas
9.
Mol Med ; 28(1): 69, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717152

RESUMO

Cancer is the leading cause of mortality worldwide. Regulator of calcineurin 1 (RCAN1), as a patent endogenous inhibitor of calcineurin, plays crucial roles in the pathogenesis of cancers. Except for hypopharyngeal and laryngopharynx cancer, high expression of RCAN1 inhibits tumor progression. Molecular antitumor functions of RCAN1 are largely dependent on calcineurin. In this review, we highlight current research on RCAN1 characteristics, and the interaction between RCAN1 and calcineurin. Moreover, the dysregulation of RCAN1 in various cancers is reviewed, and the potential of targeting RCAN1 as a new therapeutic approach is discussed.


Assuntos
Calcineurina , Neoplasias , Calcineurina/metabolismo , Proteínas de Ligação a DNA , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Musculares/metabolismo , Fatores de Transcrição NFATC/metabolismo , Neoplasias/tratamento farmacológico
10.
J Immunother Cancer ; 10(3)2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35260434

RESUMO

BACKGROUNDS: In advanced pancreatic ductal adenocarcinoma (PDAC), immune therapy, including immune checkpoint inhibitors, has limited efficacy, encouraging the study of combination therapy. METHODS: Tumor necrosis factor receptor 2 (TNFR2) was analyzed via immunohistochemistry, immunofluorescence, western blotting, and ELISAs. The in vitro mechanism that TNFR2 regulates programmed cell death 1 ligand 1 (PD-L1) was investigated using immunofluorescence, immunohistochemistry, flow cytometry, western blotting, and chromatin immunoprecipitation (ChIP). In vivo efficacy and mechanistic studies, using C57BL/6 mice and nude mice with KPC cell-derived subcutaneous and orthotopic tumors, employed antibodies against TNFR2 and PD-L1. Survival curves were constructed for the orthotopic model and a genetically engineered PDAC model (LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre). Mass cytometry, immunohistochemistry, and flow cytometry analyzed local and systemic alterations in the immunophenotype. RESULTS: TNFR2 showed high expression and is a prognostic factor in CD8+ T cell-enriched pancreatic cancer. TNFR2 promotes tumorigenesis and progression of pancreatic cancer via dual effect: suppressing cancer immunogenicity and partially accelerating tumor growth. TNFR2 positivity correlated with PD-L1, and in vitro and in vivo, it could regulate the expression of PDL1 at the transcription level via the p65 NF-κB pathway. Combining anti-TNFR2 and PD-L1 antibodies eradicated tumors, prolonged overall survival in pancreatic cancer, and induced strong antitumor immune memory and secondary prevention by reducing the infiltration of Tregs and tumor-associated macrophages and inducing CD8+ T cell activation in the PDAC microenvironment. Finally, the antitumor immune response derived from combination therapy is mainly dependent on CD8+ T cells, partially dependent on CD4+ T cells, and independent of natural killer cells. CONCLUSIONS: Anti-TNFR2 and anti-PD-L1 combination therapy eradicated tumors by inhibiting their growth, relieving tumor immunosuppression, and generating robust memory recall.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Antígeno B7-H1 , Carcinoma Ductal Pancreático/terapia , Humanos , Imunoterapia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Receptor de Morte Celular Programada 1 , Receptores Tipo II do Fator de Necrose Tumoral , Microambiente Tumoral , Neoplasias Pancreáticas
11.
Pharmacol Res ; 170: 105741, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174446

RESUMO

Programmed death ligand 1 (PD-L1) has conventionally been considered as a type I transmembrane protein that can interact with its receptor, programmed cell death 1 (PD-1), thus inducing T cell deactivation and immune escape. However, targeting the PD-1/PD-L1 axis has achieved adequate clinical responses in very few specific malignancies. Recent studies have explored the extracellularly and subcellularly located PD-L1, namely, nuclear PD-L1 (nPD-L1), cytoplasmic PD-L1 (cPD-L1), soluble PD-L1 (sPD-L1), and extracellular vesicle PD-L1 (EV PD-L1), which might shed light on the resistance to anti-PD1/PDL1 therapy. In this review, we summarize the four atypical localizations of PD-L1 with a focus on their novel functions, such as gene transcription regulation, therapeutic efficacy prediction, and resistance to various cancer therapies. Additionally, we highlight that non-cytomembrane PD-L1s are of significant cancer diagnostic value and are promising therapeutic targets to treat cancer.


Assuntos
Antígeno B7-H1/antagonistas & inibidores , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Antígeno B7-H1/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/efeitos adversos , Terapia de Alvo Molecular , Neoplasias/imunologia , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral
12.
Oncogene ; 40(17): 3136-3151, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33824473

RESUMO

Therapeutic strategies to treat pancreatic ductal adenocarcinoma (PDAC) remain unsatisfying and limited. Therefore, it is imperative to fully determine the mechanisms underlying PDAC progression. In the present study, we report a novel role of regulator of calcineurin 1, isoform 4 (RCAN1.4) in regulating PDAC progression. We demonstrated that RCAN1.4 expression was decreased significantly in PDAC tissues compared with that in para-cancerous tissues, and correlated with poor prognosis of patients with pancreatic cancer. In vitro, stable high expression of RCAN1.4 could suppress the metastasis and proliferation and angiogenesis of pancreatic tumor cells. In addition, interferon alpha inducible protein 27 (IFI27) was identified as having a functional role in RCAN1.4-mediated PDAC migration and invasion, while VEGFA play a vital role in RCAN1.4-mediated PDAC angiogenesis. Analysis of mice with subcutaneously/orthotopic implanted xenograft tumors and liver metastasis model confirmed that RCAN1.4 could modulate the growth, metastasis, and angiogenesis of tumors via IFI27/VEGFA in vivo. In conclusion, our results suggested that RCAN1.4 suppresses the growth, metastasis, and angiogenesis of PDAC, functioning partly via IFI27 and VEGFA. Importantly, our results provided possible diagnostic criteria and therapeutic targets for PDAC.


Assuntos
Carcinoma Ductal Pancreático , Animais , Calcineurina , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Camundongos , Neoplasias Pancreáticas , Ensaios Antitumorais Modelo de Xenoenxerto , Neoplasias Pancreáticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA