Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38545690

RESUMO

The miR390-derived TAS3 trans-acting short-interfering RNAs (tasiRNAs) module represents a conserved RNA silencing pathway in the plant kingdom; however, its characterization in the bryophyte Marchantia polymorpha is limited. This study elucidated that MpDCL4 processes MpTAS3 double-stranded RNA (dsRNA) to generate tasiRNAs, primarily from the 5'- and 3'-ends of dsRNA. Notably, we discovered a novel tasiRNA, tasi78A, can negatively regulate a cytochrome P450 gene, MpCYP78A101. Additionally, tasi78A was abundant in MpAGO1, and transient expression assays underscored the role of tasi78A in repressing MpCYP78A101. A microRNA, miR11700, also regulates MpCYP78A101 expression. This coordinate regulation suggests a role in modulating auxin signaling at apical notches of gemma, influencing the growth and sexual organ development of M. polymorpha and emphasizing the significance of RNA silencing in MpCYP78A101 regulation. However, phylogenetic analysis identified another paralog of the CYP78 family, Mp1g14150, which may have a redundant role with MpCYP78A101, explaining the absence of noticeable morphological changes in loss-of-function plants. Taken together, our findings provide new insights into the combined regulatory roles of miR390/MpTAS3/miR11700 in controlling MpCYP78A101 and expand our knowledge about the biogenesis and regulation of tasiRNAs in M. polymorpha.

2.
Antioxidants (Basel) ; 10(6)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208283

RESUMO

The characteristics of phthalates had been thought to be similar to endocrine disruptors, which increases cancer risk. The role of phthalates in acquired drug resistance remains unclear. In this study, we investigated the effect of di-(2-ethylhexyl) phthalate (DEHP) on acquired drug resistance in breast cancer. MCF7 and MDA-MB-231 breast cancer cells were exposed to long-term physiological concentration of DEHP for more than three months. Long-exposure DEHP permanently attenuated the anti-proliferative effect of doxorubicin with estrogen receptor-independent activity even after withdrawal of DEHP. Long term DEHP exposure significantly reduced ROS (O2-) level in MDA-MB-231 cells while increased in MCF7 cells. ATP-binding cassette (ABC) transporters possess a widely recognized mechanism of drug resistance and are considered a target for drug therapy. Upregulation of ABC family proteins, ABCB-1 and ABCC-1 observed in DEHP-exposed clones compared to doxorubicin-resistant (DoxR) and parental MDA-MB-231 cells. A viability assay showed enhanced multidrug resistance in DEHP-exposed clones against Dox, topotecan, and irinotecan. Inhibition of ABC transporters with tariquidar, enhanced drug cytotoxicity through increased drug accumulation reversing acquired multidrug resistance in MDA-MB-231 breast cancer cells. Tariquidar enhanced Dox cytotoxicity by increasing intracellular ROS production leading to caspase-3 mediated apoptosis. Activation of PI3K/Akt signaling enhanced proliferation and growth of DEHP-exposed MDA-MB-231 cells. Overall, long-term DEHP exposure resulted in acquired multidrug resistance by upregulating ABCB-1 and ABCC1; apart from proliferation PI3K/Akt may be responsible for acquired drug resistance through ABC transporter upregulation. Targeting ABCB1 and ABCC1 with tariquidar may be a promising strategy for reversing the acquired multidrug resistance of triple-negative breast cancer cells.

3.
Arch Immunol Ther Exp (Warsz) ; 66(3): 183-197, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29209738

RESUMO

Di(2-ethylhexyl)phthalate (DEHP), a widely used plasticizer, mainly serves as an additive to render polyvinyl chloride (PVC) soft and flexible. PVC plastics have become ubiquitous in our modern society. Yet, the leaching of DEHP from PVC-based consumables ultimately results in the deposition in certain tissues via inadvertent applications. Health risks for human populations exposed to DEHP has been assumed by studies on rodents and other species, including the DEHP-induced developmental dysregulation, reproductive impairments, tumorigenesis, and diseases in a transgenerational manner. In this review, we comprehensively summarize the accumulated literature regarding the multifaceted roles of DEHP in the activation of the nuclear receptors, the alteration of the redox homeostasis, epigenetic modifications and the acquisition of chemoresistance.


Assuntos
Antineoplásicos/uso terapêutico , Dietilexilftalato/uso terapêutico , Neoplasias/metabolismo , Plastificantes/uso terapêutico , Animais , Antineoplásicos/química , Carcinogênese , Dietilexilftalato/química , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Homeostase , Humanos , Oxirredução , Ácidos Ftálicos , Plastificantes/química , Cloreto de Polivinila , Receptores Citoplasmáticos e Nucleares/metabolismo
4.
J Immunol ; 191(6): 3328-36, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23940278

RESUMO

The IFN immune system comprises type I, II, and III IFNs, signals through the JAK-STAT pathway, and plays central roles in host defense against viral infection. Posttranslational modifications such as ubiquitination regulate diverse molecules in the IFN pathway. To search for the deubiquitinating enzymes (DUBs) involved in the antiviral activity of IFN, we used RNA interference screening to identify a human DUB, ubiquitin-specific protease (USP) 13, whose expression modulates the antiviral activity of IFN-α against dengue virus serotype 2 (DEN-2). The signaling events and anti-DEN-2 activities of IFN-α and IFN-γ were reduced in cells with USP13 knockdown but enhanced with USP13 overexpression. USP13 may regulate STAT1 protein because the protein level and stability of STAT1 were increased with USP13 overexpression. Furthermore, STAT1 ubiquitination was reduced in cells with USP13 overexpression and increased with USP13 knockdown regardless of with or without IFN-α treatment. Thus, USP13 positively regulates type I and type II IFN signaling by deubiquitinating and stabilizing STAT1 protein. Overall, to our knowledge, USP13 is the first DUB identified to modulate STAT1 and play a role in the antiviral activity of IFN against DEN-2 replication.


Assuntos
Vírus da Dengue/imunologia , Endopeptidases/metabolismo , Interferons/metabolismo , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/imunologia , Western Blotting , Endopeptidases/imunologia , Imunofluorescência , Humanos , Imunoprecipitação , Interferons/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Transcrição STAT1/imunologia , Proteases Específicas de Ubiquitina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...