Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(14): 2077-2084, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38511294

RESUMO

Herein, we present a paper-based POCT sensor based on lactate dehydrogenase-mediated alginate gelation combined with visual distance reading and smartphone-assisted colorimetric dual-signal analysis to determine the concentration of L-lactate in yogurt samples. In this research, L-lactate was transformed into pyruvate by lactate dehydrogenase. Pyruvate then triggered the gelation of a sol mixture, increasing the viscosity (ηs) of the mixture, which was shown as a decrease in the diffusion diameter on the paper-based sensor. In addition, protons from pyruvate accelerated the degradation of Rhodamine B, causing color fading of the mixture, which was analyzed using RGB analysis application software. Under optimal experimental conditions, the linear ranges of visual distance reading and smartphone-assisted colorimetric analysis were 0.1-15 µM and 0.3-15 µM and the detection limits were 0.03 µM and 0.07 µM, respectively. As a proof-of-concept application, we exploited the paper-based sensor to determine the concentration of L-lactate in yogurt samples. The results from the dual-signal paper-based sensor were consistent with the ones from HPLC analysis. In short, this study developed a simple, convenient, cost-effective, and feasible method for the quantitative detection of L-lactate in real samples.


Assuntos
Colorimetria , Leitura , Smartphone , Compostos Orgânicos , Ácido Pirúvico , Alginatos , L-Lactato Desidrogenase , Lactatos
2.
Bioorg Chem ; 145: 107191, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432153

RESUMO

The sigma 2 receptor (σ2R), which was recently identified as the transmembrane protein 97 (TMEM97), is increasingly attracting interest as a possible therapeutic target for indications in neuroscience. Toward identifying novel modulators of σ2R/TMEM97, we prepared a collection of benzoxazocine, benzomorphan, and methanobenzazepine ligands related to the known bioactive norbenzomorphans DKR-1677, FEM-1689, and EES-1686 and determined their Ki values for σ2R/TMEM97 and the sigma 1 receptor (σ1R). The σ2R/TMEM97 binding affinities and selectivities relative to σ1R of these new benzoxazocine, benzomorphan, and methanobenzazepine analogs are lower, often significantly lower, than their respective norbenzomorphan counterparts, suggesting the spatial orientation of pharmacophoric substituents is critical for binding to the two proteins. The benzoxazocine, benzomorphan, and methanobenzazepine congeners of DKR-1677 and FEM-1689 tend to be weakly selective for σ2R/TMEM97 versus σ1R, whereas EES-1686 derivatives exhibit the greatest selectivity, suggesting the size and/or nature of the substituent on the nitrogen atom of the scaffold may be important for selectivity. Computational docking studies were performed for the 1S,5R-and 1R,5S-enantiomers of DKR-1677, FEM-1689, and EES-1686 and their benzoxazocine, benzomorphan, and methanobenzazepine counterparts. These computations predict that the protonated amino group of each ligand forms a highly conserved salt bridge and a H-bonding interaction with Asp29 as well as a cation-π interaction with Tyr150 of σ2R/TMEM97. These electrostatic interactions are major driving forces for binding to σ2R/TMEM97 and are similar, though not identical, for each ligand. Other interactions within the well-defined binding pocket also tend to be comparable, but there are some major differences in how the hydrophobic aryl groups of various ligands interact with the protein surface external to the binding pocket. Overall, these studies show that the orientations of aryl and N-substituents on the norbenzomorphan and related scaffolds are important determinants of binding affinity of σ2R/TMEM97 ligands, and small changes can have significant effects upon binding profiles.


Assuntos
Benzomorfanos , Ligantes , Benzomorfanos/química , Relação Estrutura-Atividade
3.
Biosens Bioelectron ; 252: 116149, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38394701

RESUMO

The microRNA-21 is closely related to chromatin remodeling and epigenetic regulation. In this work, an efficient double-response 3D DNA nanomachine (DRDN) was assembled by co-immobilizing two different lengths of hairpin DNA on the surface of gold nanoparticles (AuNPs) to capture microRNA-21 (miRNA-21), recycle miRNA-21, and trigger hybridization chain reactions (HCR). This work reports the fabrication of a laser-scribed graphene (LSG) electrode with excellent flexibility and electrical conductivity by laser-scribing commercial polyimide films (PI). The as-proposed self-powered biosensing platform presents significantly increased instantaneous current to in real-time monitor miRNA-21 by a capacitor. The biosensing platform exhibited highly sensitive detection of miRNA-21 with a detection limit of 0.142 fM in the range of 0.5 fM to 1 × 104 fM, and demonstrated high efficiency in the analysis of the tumor markers.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , MicroRNAs , MicroRNAs/genética , MicroRNAs/análise , Ouro , Epigênese Genética , Técnicas Eletroquímicas , DNA/genética , Limite de Detecção
4.
Proc Natl Acad Sci U S A ; 120(52): e2306090120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38117854

RESUMO

The sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal antinociceptive effect is approximately 24 h following dosing. We sought to understand this unique antineuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout mice for Tmem97, we find that a σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce antinociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.


Assuntos
Neuralgia , Masculino , Feminino , Humanos , Camundongos , Animais , Ligantes , Neuralgia/metabolismo , Nociceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Camundongos Knockout , Modelos Animais de Doenças , Gânglios Espinais/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo
5.
Anal Chem ; 95(44): 16359-16365, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37889605

RESUMO

A self-powered biosensing system with multivariate signal amplification is designed for the ultrasensitive, highly efficient, rapid-response, and real-time detection of platelet-derived growth factor-BB (PDGF-BB). The biosensing system is composed of enzymatic biofuel cells (EBFCs), a capacitor, a digital multimeter (DMM), and a computer. Using the hybridization chain reaction (HCR), a few single DNA chains are transformed into abundant double-helix chains, which stimulates the reduction of [Ru(NH3)6]3+ to [Ru(NH3)6]2+ by electrostatic interaction, corresponding to the "on" state for HCR. As a result, the open-circuit voltage (EOCV) is significantly increased in this self-powered biosensing system. When PDGF-BB is present, a binding interaction between the target and the aptamer, i.e., PDGF-BB/Apt, corresponding to the "off" state for HCR, results in a decrease of EOCV. The PDGF-BB concentration is inversely proportional to EOCV, allowing readable, effective, and precise real-time detection of PDGF-BB. The detection limit of the biosensing system is 0.031 pg/mL (S/N = 3). This strategy provides a promising and powerful tool for the early clinical diagnosis of related colorectal cancer markers.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Becaplermina , Aptâmeros de Nucleotídeos/genética , Técnicas Biossensoriais/métodos , Limite de Detecção , DNA/genética , Proteínas Proto-Oncogênicas c-sis
6.
Anal Chem ; 95(40): 15125-15132, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37774402

RESUMO

An ultralow-potential electrochemiluminescence (ECL) aptasensor has been designed for zearalenone (ZEN) assay based on a resonance energy transfer (RET) system with SnS2 QDs/g-C3N4 as a novel luminophore and CuO/NH2-UiO-66 as a dual-quencher. SnS2 QDs were loaded onto g-C3N4 nanosheets and enhanced the ECL luminescence via strong synergistic effects under an ultralow potential. The UV-vis absorption spectrum of CuO/NH2-UiO-66 exhibits considerable overlap with the ECL emission spectrum of SnS2 QDs/g-C3N4, an important consideration for the RET process. In order to stimulate RET, the ZEN aptamer and complementary DNA are introduced for conjugation between the donor and the acceptor. With the binding interaction between ZEN by its aptamer, CuO/NH2-UiO-66 is removed from the electrode surface, resulting in the inhibition of the RET system and an increase in the ECL signal. Under optimal conditions, the as-prepared aptasensor quantified ZEN from 0.5 µg·mL-1 to 0.1 fg·mL-1 with a low limit of detection of 0.085 fg·mL-1, and it exhibited good stability, excellent specificity, high reproducibility, and desirable practicality. The sensing strategy provides a method for mycotoxins assay to monitor food safety.

7.
Anal Chem ; 95(40): 15042-15048, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37768137

RESUMO

A novel self-powered biosensor is fabricated for ultrasensitive microRNA-21 (miRNA-21) detection, which includes an enzymatic biofuel cell (EBFC), DNA walkers, a digital multimeter (DMM), and a capacitor. As a novel strategy for signal amplification, DNA walkers are designed in the cathode, while the capacitor stores electrochemical energy from the EBFC to further boost the instantaneous current displayed by the DMM. When miRNA-21 is present, the DNA walkers are provoked to walk from as-opened hairpin structures to other hairpin structures, generating double-strand DNA structures, which stimulate [Ru(NH3)6]3+ to be adsorbed on the cathode surface by electrostatic interaction. Afterward, [Ru(NH3)6]3+ is reduced to [Ru(NH3)6]2+, and the open circuit voltage (EOCV) is significantly increased. Depending on the approach of signal amplification from DNA walkers, this biosensor displays an ultrasensitive assay toward miRNA-21 in the range of 0.5 to 104 fM, with a detection limit of 0.15 fM. In addition, this self-powered biosensor displays high selectivity for miRNA-21 assay in human serum samples.

8.
RSC Med Chem ; 14(8): 1472-1481, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37593580

RESUMO

It is of great importance to develop new strategies to combat antibiotic resistance. Our lab has discovered halogenated phenazine (HP) analogues that are highly active against multidrug-resistant bacterial pathogens. Here, we report the design, synthesis, and study of a new series of nitroarene-based HP prodrugs that leverage intracellular nitroreductase (NTR) enzymes for activation and subsequent release of active HP agents. Our goals of developing HP prodrugs are to (1) mitigate off-target metal chelation (potential toxicity), (2) possess motifs to facilitate intracellular, bacterial-specific HP release, (3) improve water solubility, and (4) prevent undesirable metabolism (e.g., glucuronidation of HP's phenol). Following the synthesis of HP-nitroarene prodrugs bearing a sulfonate ester linker, NTR-promoted release experiments demonstrated prodrug HP-1-N released 70.1% of parent HP-1 after 16 hours (with only 6.8% HP-1 release without NTR). In analogous in vitro experiments, no HP release was observed for control sulfonate ester compounds lacking the critical nitro group. When compared to parent HP compounds, nitroarene prodrugs evaluated during these studies demonstrate similar antibacterial activities in MIC and zone of inhibition assays (against lab strains and clinical isolates). In conclusion, HP-nitroarene prodrugs could provide a future avenue to develop potent agents that target antibiotic resistant bacteria.

9.
Anal Chem ; 95(37): 13838-13843, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37650873

RESUMO

Novel and effective coreaction accelerators are of great importance in electrochemiluminescence (ECL) systems. In this work, novel AuPt nanodonuts, i.e., SnS2 quantum dots (QDs)/Cys-AuPt heterogeneous nanorings (NRs), serve as both a highly effective coreaction accelerator and the luminophore in a label-free ECL aptasensor. The novel AuPt nanodonuts were formed by decorating SnS2 QDs onto AuPt NR surfaces, which would promote the production of more coreactant intermediate in the SnS2 QDs/K2S2O8 system. As a result, the ECL performance was greatly improved. Meanwhile, l-cysteine (l-Cys) played an important role in the combination between AuPt NRs and SnS2 QDs, and the nanodonuts served as the matrix to load numerous lincomycin (Lin) aptamers. Under optimal conditions, the ECL aptasensor exhibited ultrasensitive detection of Lin from 1 fg/mL to 0.1 pg/mL with a limit of detection (LOD) of 0.7 fg/mL (1.72 fM).


Assuntos
Cisteína , Lincomicina , Limite de Detecção , Oligonucleotídeos , Fotometria
10.
bioRxiv ; 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37090527

RESUMO

The Sigma 2 receptor (σ2R) was described pharmacologically more than three decades ago, but its molecular identity remained obscure until recently when it was identified as transmembrane protein 97 (TMEM97). We and others have shown that σ2R/TMEM97 ligands alleviate mechanical hypersensitivity in mouse neuropathic pain models with a time course wherein maximal anti-nociceptive effect is approximately 24 hours following dosing. We sought to understand this unique anti-neuropathic pain effect by addressing two key questions: do these σ2R/TMEM97 compounds act selectively via the receptor, and what is their downstream mechanism on nociceptive neurons? Using male and female conventional knockout (KO) mice for Tmem97, we find that a new σ2R/TMEM97 binding compound, FEM-1689, requires the presence of the gene to produce anti-nociception in the spared nerve injury model in mice. Using primary mouse dorsal root ganglion (DRG) neurons, we demonstrate that FEM-1689 inhibits the integrated stress response (ISR) and promotes neurite outgrowth via a σ2R/TMEM97-specific action. We extend the clinical translational value of these findings by showing that FEM-1689 reduces ISR and p-eIF2α levels in human sensory neurons and that it alleviates the pathogenic engagement of ISR by methylglyoxal. We also demonstrate that σ2R/TMEM97 is expressed in human nociceptors and satellite glial cells. These results validate σ2R/TMEM97 as a promising target for further development for the treatment of neuropathic pain.

11.
J Mater Chem B ; 11(12): 2727-2732, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36880155

RESUMO

In this work, a novel method for the colorimetric sensing of α-glucosidase (α-Glu) activity was developed based on CoOOH nanoflakes (NFs), which exhibit efficient oxidase-mimicking activity. Colorless 3,3',5,5'-tetramethylbenzidine (TMB) can be oxidized by CoOOH NFs into blue-colored oxidized TMB (oxTMB) in the absence of H2O2. L-Ascorbic acid-2-O-α-D-glucopyranose (AAG) can be hydrolysed by α-glucosidase to produce ascorbic acid, resulting in a significant decrease of catalytic activity of CoOOH NFs. Thus, a colorimetric α-glucosidase activity detection method was designed with a limit of detection of 0.0048 U mL-1. Furthermore, the designed sensing platform exhibits favorable applicability for the α-glucosidase (α-Glu) activity assay in real samples. Meanwhile, this method can be expanded to study the inhibitors of α-Glu. Finally, the as-proposed method combined with a smartphone would be a color recognizer, which was successfully applied for the determination of α-Glu activity in human serum samples.


Assuntos
Peróxido de Hidrogênio , alfa-Glucosidases , Humanos , Óxidos , Oxirredutases
12.
Chem Commun (Camb) ; 58(93): 12983-12986, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36326167

RESUMO

Excessive intake of nitrite is a serious risk to human health. Research on the method of detecting nitrite in food is of great significance to avoid this issue. In this work, we report a colorimetric method based on iodide-mediated etching of gold nanostars (Au NSs) for the determination of nitrite with high selectivity and sensitivity. In the presence of iodide, the strong affinity between iodide and Au NSs results in the rapid etching of Au NSs into spherical gold nanoparticles, resulting in significant changes in the surface plasmon resonance (SPR) spectrum and the solution color. Because nitrite can oxidize iodide under acidic conditions, the etching degree of Au NSs could be controlled by adding different nitrite concentrations to consume iodide, leading to quantitative detection of nitrite. Under the optimal conditions, nitrite exhibits a good linear relationship with the absorption ratio (A820 nm/A570 nm) in the concentration range of 2-300 µM, with a detection limit of 0.4 µM. The as-proposed method was successfully applied to determination of nitrite in cabbage and sausage, and the results showed good reproducibility and accuracy.


Assuntos
Ouro , Nanopartículas Metálicas , Humanos , Nitritos , Iodetos , Reprodutibilidade dos Testes , Colorimetria/métodos
13.
ACS Appl Mater Interfaces ; 14(39): 44222-44227, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36150034

RESUMO

Herein, a novel sandwich-type immunosensor was designed using Pt nanoparticle-decorated SnS2 nanoplates (Pt@SnS2) as a matrix and N,B-doped Eu MOF (N,B-Eu MOF) nanospheres as a signal amplifier. In Pt@SnS2, Pt nanoparticles (NPs) enhance the surface electron transport capability and electrochemiluminescence (ECL) performance of SnS2 nanoplates. The dual "antenna" effect of 5-boronoisophthalic acid (5-bop) and 5-nitroisophthalic acid (5-nop) enables the N,B-Eu MOFs to show very good ECL performance at the cathode. In the presence of the target carcinoembryonic antigen (CEA), the sandwich-type immunosensor provides specific immune responses, and the ECL signal of the immunosensor is greatly amplified by the signal probe N,B-Eu MOFs. In view of the above, the immunosensor was successfully applied for highly sensitive and selective detection of CEA with a detection limit of 0.06 pg·mL-1. This sensor exhibits high sensitivity and specificity, excellent stability, good reproducibility, and good practicability in real human serum.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Biomarcadores Tumorais , Antígeno Carcinoembrionário , Técnicas Eletroquímicas , Ouro , Humanos , Imunoensaio , Limite de Detecção , Medições Luminescentes , Reprodutibilidade dos Testes
14.
J Mater Chem B ; 10(35): 6752-6757, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35403657

RESUMO

ß-Lactoglobulin (ß-Lg), a food allergen, can easily cause allergic reactions in infants and young children. Therefore, it is necessary to develop a rapid, sensitive, and selective detection method to protect individuals prone to allergies. In this paper, a fluorescence assay based on WS2 nanosheets and a fluorescent dye (FAM)-labeled ß-Lg aptamer was designed to detect ß-Lg rapidly with high sensitivity. In the sensing platform, the ß-Lg aptamer is adsorbed on the WS2 nanosheet surface by van der Waals forces, which trigger the phenomenon of fluorescence resonance energy transfer (FRET) and suppress the fluorescence signal in the system. When ß-Lg is present, the conformation of the aptamer specifically bound to ß-Lg changes. Therefore, the aptamer is separated from the WS2 nanosheet surface, and the fluorescence signal is recovered. This method combines the high quenching efficiency of WS2 nanosheets and good specificity of the ß-Lg aptamer. The detection range of this method for ß-Lg is 0.1-100 µg mL-1. The detection limit is 20.4 ng mL-1. This method exhibits high sensitivity, selectivity and good reproducibility, and it can be used for ß-Lg detection in actual samples.


Assuntos
Lactoglobulinas , Leite , Alérgenos , Animais , Criança , Pré-Escolar , Corantes Fluorescentes , Humanos , Limite de Detecção , Reprodutibilidade dos Testes
15.
Anal Chem ; 94(16): 6410-6416, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35420408

RESUMO

Based on luminol-capped Pt-tipped Au bimetallic nanorods (NRs) (L-Au-Pt NRs) as the anode emitter and SnS2 quantum dots (QDs) hybrid Eu metal organic frameworks (MOFs) (SnS2 QDs@Eu MOFs) as the cathode emitter, a dual-signal electrochemiluminescence (ECL) platform was designed for the ultrasensitive and highly selective detection of kanamycin (KAN). Using a dual-signal output mode, the ratiometric ECL aptasensor largely eliminates false-positives or false-negatives by self-calibration in the KAN assay process. To stimulate the resonance energy transform (RET) system, the KAN aptamer and complementary DNA are introduced for conjugation between the donor and acceptor. With the specific recognition of target KAN by its aptamer, L-Au-Pt NRs-apt partially peels off from the electrode surface. Eventually, the RET system is removed, leading to an increasing cathode signal and a decreasing anode signal. In view of this phenomenon, the ratiometric aptasensor can quantify KAN from 1 pM to 10 nM with a low detection limit of 0.32 pM. This dual-signal ECL aptasensor exhibits great practical potential in environmental monitoring and food safety.


Assuntos
Técnicas Biossensoriais , Canamicina/análise , Estruturas Metalorgânicas , Pontos Quânticos , Técnicas Eletroquímicas , Canamicina/química , Medições Luminescentes
16.
iScience ; 25(5): 104198, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35479399

RESUMO

Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are common forms of adult onset muscular dystrophy. Pathogenesis in both diseases is largely driven by production of toxic-expanded repeat RNAs that sequester MBNL RNA-binding proteins, causing mis-splicing. Given this shared pathogenesis, we hypothesized that diamidines, small molecules that rescue mis-splicing in DM1 models, could also rescue mis-splicing in DM2 models. While several DM1 cell models exist, few are available for DM2 limiting research and therapeutic development. Here, we characterize DM1 and DM2 patient-derived fibroblasts for use in small molecule screens and therapeutic studies. We identify mis-splicing events unique to DM2 fibroblasts and common events shared with DM1 fibroblasts. We show that diamidines can partially rescue molecular phenotypes in both DM1 and DM2 fibroblasts. This study demonstrates the potential of fibroblasts as models for DM1 and DM2, which will help meet an important need for well-characterized DM2 cell models.

17.
ACS Appl Mater Interfaces ; 14(1): 383-389, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978181

RESUMO

Plasmonic bimetal nanostructures can be employed to amplify electrochemiluminescence (ECL) signals. In this work, a high-performance ECL platform was constructed using a europium metal-organic framework (MOF) as a luminophore and Au-Pt bimetallic nanorods (NRs) as a plasma source. Due to the SPR effect of Au-Pt NRs, the aptasensor exhibits 2.6-fold ECL intensity compared to that of pure polyaniline (PANI)-decorated perylene tetracarboxylic dianhydride (PTCA)/Eu MOF. Moreover, decoration with PTP greatly enhances the conductivity and stability of Eu MOF, resulting in sizeable plasmon-enhanced electrochemical luminescence. The as-designed plasmon-enhanced ECL aptasensor displayed highly sensitive detection for lincomycin (Lin). The as-proposed aptasensor could quantify Lin from 0.1 mg/mL to 0.1 ng/mL with a limit of detection (LOD) of 0.026 ng/mL.


Assuntos
Materiais Biocompatíveis/química , Técnicas Eletroquímicas , Lincomicina/análise , Medições Luminescentes , Estruturas Metalorgânicas/química , Anidridos/química , Compostos de Anilina/química , Animais , Európio/química , Ouro/química , Teste de Materiais , Leite/química , Tamanho da Partícula , Perileno/análogos & derivados , Perileno/química , Platina/química
18.
Org Biomol Chem ; 19(30): 6603-6608, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34286808

RESUMO

Antibiotic-resistant infections present significant challenges to patients. As a result, there is considerable need for new antibacterial therapies that eradicate pathogenic bacteria through non-conventional mechanisms. Our group has identified a series of halogenated phenazine (HP) agents that induce rapid iron starvation that leads to potent killing of methicillin-resistant Staphylococcus aureus biofilms. Here, we report the design, chemical synthesis and microbiological assessment of a HP-quinone ether prodrug model aimed to (1) eliminate general (off-target) iron chelation, and (2) release an active HP agent through the bioreduction of a quinone trigger. Here, we demonstrate prodrug analogue HP-29-Q to have a stable ether linkage that enables HP release and moderate to good antibacterial activities against lab strains and multi-drug resistant clinical isolates.


Assuntos
Staphylococcus aureus Resistente à Meticilina
19.
ACS Appl Mater Interfaces ; 13(17): 19695-19700, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33881296

RESUMO

Tetracycline (TET) is a broad-spectrum antibiotic, which is frequently used in the prevention and treatment of animal diseases, feed additives, and so on. However, its residue and accumulation in animal-derived foods could cause several side effects to the human body. Herein, we fabricated TET aptamer-pendant DNA tetrahedral nanostructure-functionalized magnetic beads (Apt-tet MBs) as a probe to detect TET. In the presence of target TET, DNA primer was released from Apt-tet MBs since the TET aptamer could specifically bind TET. Next, the separated DNA primer could effectively initiate rolling circle amplification (RCA) reaction and generate a long tandem single-stranded sequence. Finally, with SYBR Green I as the fluorescence dye, the fluorescence signal could be detected by detection probes through hybridizing the RCA product. Under optimal conditions, the fluorescent signal increased with the increasing target TET concentration within the 5 orders of magnitude dynamic range from 0.001 to 10 ng mL-1. The detection limit was calculated to be 0.724 pg mL-1 and the method showed high selectivity toward TET among different antibiotics. More impressively, this method was employed for TET determination in fish and honey samples. The as-obtained results were consistent with those of ELISA kits, holding great potential in the field of food analysis.


Assuntos
Aptâmeros de Nucleotídeos/química , Resíduos de Drogas/análise , Nanoestruturas , Técnicas de Amplificação de Ácido Nucleico/métodos , Tetraciclina/química , Ensaio de Imunoadsorção Enzimática , Produtos Pesqueiros/análise , Contaminação de Alimentos/análise , Mel/análise , Humanos , Limite de Detecção , Reprodutibilidade dos Testes , Espectrometria de Fluorescência/métodos , Tetraciclina/análise
20.
J Med Chem ; 64(11): 7275-7295, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-33881312

RESUMO

Pathogenic bacteria demonstrate incredible abilities to evade conventional antibiotics through the development of resistance and formation of dormant, surface-attached biofilms. Therefore, agents that target and eradicate planktonic and biofilm bacteria are of significant interest. We explored a new series of halogenated phenazines (HP) through the use of N-aryl-2-nitrosoaniline synthetic intermediates that enabled functionalization of the 3-position of this scaffold. Several HPs demonstrated potent antibacterial and biofilm-killing activities (e.g., HP 29, against methicillin-resistant Staphylococcus aureus: MIC = 0.075 µM; MBEC = 2.35 µM), and transcriptional analysis revealed that HPs 3, 28, and 29 induce rapid iron starvation in MRSA biofilms. Several HPs demonstrated excellent activities against Mycobacterium tuberculosis (HP 34, MIC = 0.80 µM against CDC1551). This work established new SAR insights, and HP 29 demonstrated efficacy in dorsal wound infection models in mice. Encouraged by these findings, we believe that HPs could lead to significant advances in the treatment of challenging infections.


Assuntos
Compostos de Anilina/química , Antibacterianos/síntese química , Fenazinas/química , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Desenho de Fármacos , Feminino , Halogenação , Humanos , Ferro/química , Deficiências de Ferro , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium tuberculosis/efeitos dos fármacos , Fenazinas/farmacologia , Fenazinas/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Relação Estrutura-Atividade , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...