Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2310692, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243875

RESUMO

Multiscale defects engineering offers a promising strategy for synergistically enhancing the thermoelectric and mechanical properties of thermoelectric semiconductors. However, the specific impact of individual defects, in particular precipitation, on mechanical properties remains ambiguous. In this work, the mechanical and thermoelectric properties of Sn1.03- x Mnx Te (x = 0-0.30) semiconductors are systematically studied. Mn-alloying induces dense dislocations and Mn nano-precipitates, resulting in an enhanced compressive strength with x increased to 0.15. Quantitative calculations are performed to assess the strengthening contributions including grain boundary, solid solution, dislocation, and precipitation strengthening. Due to the dominant contribution of precipitation strengthening, the yield strength of the x = 0.10 sample is improved by ≈74.5% in comparison to the Mn-free Sn1.03 Te. For x ≥ 0.15, numerous MnTe precipitates lead to a synergistic enhancement of strength-ductility. In addition, multiscale defects induced by Mn alloying can scatter phonons over a wide frequency spectrum. The peak figure of merit ZT of ≈1.3 and an ultralow lattice thermal conductivity of ≈0.35 Wm-1  K-1 are obtained at 873 K for x = 0.10 and x = 0.30 samples respectively. This work reveals tha precipitation evolution optimizes the mechanical and thermoelectric properties of Sn1.03- x Mnx Te semiconductors, which may hold potential implications for other thermoelectric systems.

2.
Adv Mater ; 35(35): e2302969, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37192421

RESUMO

Simultaneously improving the mechanical and thermoelectric (TE) properties is significant for the engineering applications of inorganic TE materials. In this work, a novel nanodomain strategy is developed for Ag2 Te compounds to yield 40% and 200% improved compressive strength (160 MPa) and fracture strain (16%) when compared to domain-free samples (115 MPa and 5.5%, respectively). The domained samples also achieve a 45% improvement in average ZT value. The domain boundaries (DBs) provide extra sites for dislocation nucleation while pinning the dislocation movement, resulting in superior strength and ductility. In addition, phonon scattering induced by DBs suppresses the lattice thermal conductivity of Ag2 Te and also reduces the weighted mobility. These findings provide new insights into grain and DB engineering for high-performance inorganic semiconductors with robust mechanical properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...