Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 12(6): e0178307, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28575061

RESUMO

SecA is an essential protein in the major bacterial Sec-dependent translocation pathways. E. coli SecA has 901 aminoacyl residues which form multi-functional domains that interact with various ligands to impart function. In this study, we constructed and purified tethered C-terminal deletion fragments of SecA to determine the requirements for N-terminal domains interacting with lipids to provide ATPase activity, pore structure, ion channel activity, protein translocation and interactions with SecYEG-SecDF•YajC. We found that the N-terminal fragment SecAN493 (SecA1-493) has low, intrinsic ATPase activity. Larger fragments have greater activity, becoming highest around N619-N632. Lipids greatly stimulated the ATPase activities of the fragments N608-N798, reaching maximal activities around N619. Three helices in amino-acyl residues SecA619-831, which includes the "Helical Scaffold" Domain (SecA619-668) are critical for pore formation, ion channel activity, and for function with SecYEG-SecDF•YajC. In the presence of liposomes, N-terminal domain fragments of SecA form pore-ring structures at fragment-size N640, ion channel activity around N798, and protein translocation capability around N831. SecA domain fragments ranging in size between N643-N669 are critical for functional interactions with SecYEG-SecDF•YajC. In the presence of liposomes, inactive C-terminal fragments complement smaller non-functional N-terminal fragments to form SecA-only pore structures with ion channel activity and protein translocation ability. Thus, SecA domain fragment interactions with liposomes defined critical structures and functional aspects of SecA-only channels. These data provide the mechanistic basis for SecA to form primitive, low-efficiency, SecA-only protein-conducting channels, as well as the minimal parameters for SecA to interact functionally with SecYEG-SecDF•YajC to form high-efficiency channels.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Canais de Translocação SEC/metabolismo , Adenosina Trifosfatases/química , Animais , Proteínas de Bactérias/química , Escherichia coli/química , Transporte de Íons , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , Canais de Translocação SEC/química , Proteínas SecA , Especificidade por Substrato , Xenopus
2.
ChemMedChem ; 11(22): 2511-2521, 2016 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-27753464

RESUMO

With the widespread emergence of drug resistance, there is an urgent need to search for new antimicrobials, especially those against Gram-negative bacteria. Along this line, the identification of viable targets is a critical first step. The protein translocase SecA is commonly believed to be an excellent target for the development of broad-spectrum antimicrobials. In recent years, we developed three structural classes of SecA inhibitors that have proven to be very effective against Gram-positive bacteria. However, we have not achieved the same level of success against Gram-negative bacteria, despite the potent inhibition of SecA in enzyme assays by the same inhibitors. In this study, we use representative inhibitors as chemical probes to gain an understanding as to why these inhibitors were not effective against Gram-negative bacteria. The results validate our initial postulation that the major difference in effectiveness against Gram-positive and Gram-negative bacteria is in the additional permeability barrier posed by the outer membrane of Gram-negative bacteria. We also found that the expression of efflux pumps, which are responsible for multidrug resistance (MDR), have no effect on the effectiveness of these SecA inhibitors. Identification of an inhibitor-resistant mutant and complementation tests of the plasmids containing secA in a secAts mutant showed that a single secA-azi-9 mutation increased the resistance, providing genetic evidence that SecA is indeed the target of these inhibitors in bacteria. Such results strongly suggest SecA as an excellent target for developing effective antimicrobials against Gram-negative bacteria with the intrinsic ability to overcome MDR. A key future research direction should be the optimization of membrane permeability.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Canais de Translocação SEC/antagonistas & inibidores , Adenosina Trifosfatases/metabolismo , Antibacterianos/química , Proteínas de Bactérias/metabolismo , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Bactérias Gram-Negativas/enzimologia , Testes de Sensibilidade Microbiana , Estrutura Molecular , Canais de Translocação SEC/metabolismo , Proteínas SecA , Relação Estrutura-Atividade
3.
Bioorg Med Chem ; 23(21): 7061-8, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26432604

RESUMO

Due to the emergence and rapid spread of drug resistance in bacteria, there is an urgent need for the development of novel antimicrobials. SecA, a key component of the general bacterial secretion system required for viability and virulence, is an attractive antimicrobial target. Earlier we reported that systematical dissection of a SecA inhibitor, Rose Bengal (RB), led to the development of novel small molecule SecA inhibitors active against Escherichia coli and Bacillus subtilis. In this study, two potent RB analogs were further evaluated for activities against methicillin-resistant Staphylococcus aureus (MRSA) strains and for their mechanism of actions. These analogs showed inhibition on the ATPase activities of S. aureus SecA1 (SaSecA1) and SecA2 (SaSecA2), and inhibition of SaSecA1-dependent protein-conducting channel. Moreover, these inhibitors reduce the secretion of three toxins from S. aureus and exert potent bacteriostatic effects against three MRSA strains. Our best inhibitor SCA-50 showed potent concentration-dependent bactericidal activity against MRSA Mu50 strain and very importantly, 2-60 fold more potent inhibitory effect on MRSA Mu50 than all the commonly used antibiotics including vancomycin, which is considered the last resort option in treating MRSA-related infections. Protein pull down experiments further confirmed SaSecA1 as a target. Deletion or overexpression of NorA and MepA efflux pumps had minimal effect on the antimicrobial activities against S. aureus, indicating that the effects of SecA inhibitors were not affected by the presence of these efflux pumps. Our studies show that these small molecule analogs target SecA functions, have potent antimicrobial activities, reduce the secretion of toxins, and have the ability to overcome the effect efflux pumps, which are responsible for multi-drug resistance. Thus, targeting SecA is an attractive antimicrobial strategy against MRSA.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Anti-Infecciosos/química , Proteínas de Bactérias/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/enzimologia , Rosa Bengala/química , Adenosina Trifosfatases/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Cinética , Luz , Proteínas de Membrana Transportadoras/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Oxirredução , Estrutura Terciária de Proteína , Rosa Bengala/farmacologia , Canais de Translocação SEC , Proteínas SecA , Staphylococcus aureus/efeitos dos fármacos
4.
Anal Biochem ; 480: 58-66, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25862083

RESUMO

Establishing recordable channels in membranes of oocytes formed by expressing exogenous complementary DNA (cDNA) or messenger RNA (mRNA) has contributed greatly to understanding the molecular mechanisms of channel functions. Here, we report the extension of this semi-physiological system for monitoring the channel activity of preassembled membrane proteins in single cell oocytes by injecting reconstituted proteoliposomes along with substrates or regulatory molecules. We build on the observation that SecA from various bacteria forms active protein-conducting channels with injection of proteoliposomes, protein precursors, and ATP-Mg(2+). Such activity was enhanced by reconstituted SecYEG-SecDF•YajC liposome complexes that could be monitored easily and efficiently, providing correlation of in vitro and intact cell functionality. In addition, inserting reconstituted gap junction Cx26 liposomes into the oocytes allowed the demonstration of intracellular/extracellular Ca(2+)-regulated hemi-channel activities. The channel activities can be detected rapidly after injection, can be monitored for various effectors, and are dependent on specific exogenous lipid compositions. This simple and effective functional system with low endogenous channel activity should have broad applications for monitoring the specific channel activities of complex interactions of purified membrane proteins with their effectors and regulatory molecules.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Conexinas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Oócitos/metabolismo , Proteolipídeos/metabolismo , Análise de Célula Única , Animais , Linhagem Celular , Conexina 26 , Insetos , Camundongos , Canais de Translocação SEC , Proteínas SecA , Xenopus laevis/metabolismo
5.
Biochem Biophys Res Commun ; 456(1): 213-8, 2015 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-25446126

RESUMO

Previous studies showed that certain regions of E. coli SecA can be deleted from its N- and/or C-termini to complement a SecA amber ts mutant. In this study, we determined and characterized the dispensability of both ends of SecA molecules. With N-terminal intact or 9-aa deleted, 826aa (SecA1-826 and SecA10-826, respectively) is the minimum for complementation activity, while with N-terminus deleted by 2-21aa, SecA22-829 is the minimum. Further deletion at the C-terminus of SecA1-826/SecA10-826/SecA22-829 abolished the complementation activity in the cells. A hydrophobic amino acid is required for the 826th residue in the minimal-length SecAs. Chemical crosslinking and gel filtration result showed that both purified SecA22-828 and SecA22-829 could form a dimer. Moreover, the in vitro ATPase and protein translocation activities of SecA22-828 and SecA22-829 were similar, though lower than wild-type SecA. The active mutants had more truncated SecA in soluble than membrane-bound form, but was more stably embedded in membranes. In contrast, the inactive mutants tended to have truncated SecA more membrane-bound than soluble form, and were more loosely bound and easily chased out. Thus, the loss of complementation appears to be related to their altered subcellular localization and stability in the membranes. This study defines the substantial regions of N- and C-termini of SecA that may be deleted without losing complementation activity.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana Transportadoras/química , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Dimerização , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Deleção de Genes , Teste de Complementação Genética , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana Transportadoras/genética , Mutação , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
6.
Biochem Biophys Res Commun ; 454(2): 308-12, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25450394

RESUMO

SecA is an essential protein possessing ATPase activity in bacterial protein translocation for which Rose Bengal (RB) is the first reported sub-micromolar inhibitor in ATPase activity and protein translocation. Here, we examined the mechanisms of inhibition on various forms of SecA ATPase by conventional enzymatic assays, and by monitoring the SecA-dependent channel activity in the semi-physiological system in cells. We build on the previous observation that SecA with liposomes form active protein-conducting channels in the oocytes. Such ion channel activity is enhanced by purified Escherichia coli SecYEG-SecDF·YajC liposome complexes. Inhibition by RB could be monitored, providing correlation of in vitro activity and intact cell functionality. In this work, we found the intrinsic SecA ATPase is inhibited by RB competitively at low ATP concentration, and non-competitively at high ATP concentrations while the translocation ATPase with precursors and SecYEG is inhibited non-competitively by RB. The Inhibition by RB on SecA channel activity in the oocytes with exogenous ATP-Mg(2+), mimicking translocation ATPase activity, is also non-competitive. The non-competitive inhibition on channel activity has also been observed with SecA from other bacteria which otherwise would be difficult to examine without the cognate precursors and membranes.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Corantes Fluorescentes/farmacologia , Rosa Bengala/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Infecções por Escherichia coli/microbiologia , Proteínas de Membrana Transportadoras/metabolismo , Transporte Proteico/efeitos dos fármacos , Canais de Translocação SEC , Proteínas SecA , Xenopus
7.
Biochem Biophys Res Commun ; 447(2): 250-4, 2014 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-24704204

RESUMO

SecA is an essential ATPase in bacterial Sec-dependent protein translocation pathway, and equilibrates between monomers and dimers in solution. The question of whether SecA functions as monomers or dimers in membranes during the protein translocation is controversial. We previously constructed a tail-to-head SecAA tandem dimer, and showed it is fully functional by complementation in vivo and protein translocation in vitro, indicating that SecA can function at least as a dimer in the membrane without dissociating into monomers. In this study, we further constructed genetically a tail-to-head SecAAA trimer, which is functional in complementing a temperature-sensitive secA mutant. The purified SecAAA trimer per protomer is fully active as SecAA tandem dimers in ATPase activity, in protein translocation in vitro and in ion channel activities in the oocytes. With these functional tail-to-head trimer SecAAA and tandem SecAA, we examined their surface topology in the presence of liposomes using AFM. As expected, the soluble SecAAA without lipids are larger than SecAA. However, the ring/pore structures of SecAAA trimers were, surprisingly, almost identical to the SecA 2-monomers and SecAA dimers, raising the intriguing possibility that the SecA may exist and function as hexamer ring-structures in membranes. Cross-linking with formaldehyde showed that SecA, SecAA and SecAAA could form larger oligomers, including the hexamers. The molecular modeling simulation shows that both tail-to-head and tail-to-tail hexamers in the membranes are possible.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Proteínas de Membrana Transportadoras/química , Multimerização Proteica , Adenosina Trifosfatases/genética , Animais , Proteínas de Bactérias/genética , Reagentes de Ligações Cruzadas/química , Proteínas de Membrana Transportadoras/genética , Microscopia de Força Atômica , Oócitos , Canais de Translocação SEC , Proteínas SecA , Xenopus
8.
PLoS One ; 8(8): e72560, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977317

RESUMO

SecA, an essential component of the Sec machinery, exists in a soluble and a membrane form in Escherichia coli. Previous studies have shown that the soluble SecA transforms into pore structures when it interacts with liposomes, and integrates into membranes containing SecYEG in two forms: SecAS and SecAM; the latter exemplified by two tryptic membrane-specific domains, an N-terminal domain (N39) and a middle M48 domain (M48). The formation of these lipid-specific domains was further investigated. The N39 and M48 domains are induced only when SecA interacts with anionic liposomes. Additionally, the N-terminus, not the C-terminus of SecA is required for inducing such conformational changes. Proteolytic treatment and sequence analyses showed that liposome-embedded SecA yields the same M48 and N39 domains as does the membrane-embedded SecA. Studies with chemical extraction and resistance to trypsin have also shown that these proteoliposome-embedded SecA fragments exhibit the same stability and characteristics as their membrane-embedded SecA equivalents. Furthermore, the cloned lipid-specific domains N39 and M48, but not N68 or C34, are able to form partial, but imperfect ring-like structures when they interact with phospholipids. These ring-like structures are characteristic of a SecA pore-structure, suggesting that these domains contribute part of the SecA-dependent protein-conducting channel. We, therefore, propose a model in which SecA alone is capable of forming a lipid-specific, asymmetric dimer that is able to function as a viable protein-conducting channel in the membrane, without any requirement for SecYEG.


Assuntos
Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Microscopia de Força Atômica , Fosfolipídeos/metabolismo , Sequência de Aminoácidos , Aminoácidos/metabolismo , Lipossomos/metabolismo , Dados de Sequência Molecular , Peptídeo Hidrolases/metabolismo , Estabilidade Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Proteólise , Canais de Translocação SEC , Proteínas SecA , Solubilidade
9.
ChemMedChem ; 8(8): 1384-93, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23794293

RESUMO

SecA, a key component of bacterial Sec-dependent secretion pathway, is an attractive target for exploring novel antimicrobials. Rose bengal (RB), a polyhalogenated fluorescein derivative, was found from our previous study as a potent SecA inhibitor. Here we describe the synthesis and structure-activity relationships (SAR) of 23 RB analogues that were designed by systematical dissection of RB. Evaluation of these analogues allowed us to establish an initial SAR in SecA inhibition. The antimicrobial effects of these SecA inhibitors are confirmed in experiments using E. coli and B. subtilis.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Anti-Infecciosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Rosa Bengala/química , Adenosina Trifosfatases/metabolismo , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Membrana Transportadoras/metabolismo , Ligação Proteica , Rosa Bengala/metabolismo , Rosa Bengala/farmacologia , Canais de Translocação SEC , Proteínas SecA , Relação Estrutura-Atividade
10.
Biochem Biophys Res Commun ; 437(2): 212-216, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23791875

RESUMO

Previous studies showed that Escherichia coli membranes depleted of SecYEG are capable of translocating certain precursor proteins, but not other precursors such as pPhoA, indicating a differential requirement for SecYEG. In this study, we examined the role of SecYEG in pPhoA translocation using a purified reconstituted SecA-liposomes system. We found that translocation of pPhoA, in contrast to that of pOmpA, requires the presence of purified SecYEG. A differential specificity of the SecYEG was also revealed in its interaction with SecA: EcSecYEG did not enhance SecA-mediated pOmpA translocation by purified SecA either from Pseudomonas aeruginosa or Bacillus subtilis. Neither was SecYEG required for eliciting ion channel activity, which could be opened by unfolded pPhoA or unfolded PhoA. Addition of the SecYEG complex did restore the specificity of signal peptide recognition in the ion-channel activity. We concluded that SecYEG confers specificity in interacting with protein precursors and SecAs.


Assuntos
Proteínas de Escherichia coli/metabolismo , Animais , Escherichia coli/metabolismo , Transporte Proteico , Canais de Translocação SEC , Xenopus
11.
Biochem Biophys Res Commun ; 431(3): 388-92, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23337498

RESUMO

Previous work showed that SecA alone can promote protein translocation and ion-channel activity in liposomes, and that SecYEG increases efficiency as well as signal peptide specificity. We now report that SecDF·YajC further increases translocation and ion-channel activity. These activities of reconstituted SecA-SecYEG-SecDF·YajC-liposome are almost the same as those of native membranes, indicating the transformation of reconstituted functional high-affinity protein-conducting channels from the low-affinity SecA-channels.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Lipossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Animais , Proteínas de Bactérias/química , Proteínas de Escherichia coli/química , Canais Iônicos/química , Lipossomos/química , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA , Xenopus laevis
12.
ChemMedChem ; 7(4): 571-7, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22354575

RESUMO

SecA is a central component of the general secretion system that is essential for bacterial growth and thus an ideal target for antimicrobial agents. A series of fluorescein analogues were first screened against the ATPase activity using the truncated unregulated SecA catalytic domain. Rose bengal (RB) and erythrosin B (EB) were found to be potent inhibitors SecA with IC(50) values of 0.5 µM and 2 µM, respectively. RB and EB inhibit the catalytic SecA ATPase more effectively than the F(1) F(0) -proton ATPase. We used three assays to test the effect of these compounds on full-length SecA ATPase: in solution (intrinsic ATPase), in membrane preparation, and translocation ATPase. RB and EB show the following trend in terms of IC(50) values: translocation ATPase

Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Eritrosina/farmacologia , Fluoresceína/química , Rosa Bengala/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/enzimologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Eritrosina/química , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Concentração Inibidora 50 , Proteínas de Membrana Transportadoras , Modelos Moleculares , Transporte Proteico/efeitos dos fármacos , Rosa Bengala/química , Canais de Translocação SEC , Proteínas SecA
13.
J Biol Chem ; 286(52): 44702-9, 2011 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-22033925

RESUMO

SecA is an essential component of the Sec-dependent protein translocation pathway across cytoplasmic membranes in bacteria. Escherichia coli SecA binds to cytoplasmic membranes at SecYEG high affinity sites and at phospholipid low affinity sites. It has been widely viewed that SecYEG functions as the essential protein-conducting channel through which precursors cross the membranes in bacterial Sec-dependent pathways, and that SecA functions as a motor to hydrolyze ATP in translocating precursors through SecYEG channels. We have now found that SecA alone can promote precursor translocation into phospholiposomes. Moreover, SecA-liposomes elicit ionic currents in Xenopus oocytes. Patch-clamp recordings further show that SecA alone promotes signal peptide- or precursor-dependent single channel activity. These activities were observed with the functional SecA at about 1-2 µM. The results show that SecA alone is sufficient to promote protein translocation into liposomes and to elicit ionic channel activity at the phospholipids low affinity binding sites, thus indicating that SecA is able to form the protein-conducting channels. Even so, such SecA-liposomes are less efficient than those with a full complement of Sec proteins, and lose the signal-peptide proofreading function, resembling the effects of PrlA mutations. Addition of purified SecYEG restores the signal peptide specificity and increases protein translocation and ion channel activities. These data show that SecA can promote protein translocation and ion channel activities both when it is bound to lipids at low affinity sites and when it is bound to SecYEG with high affinity. The latter of the two interactions confers high efficiency and specificity.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Sinais Direcionadores de Proteínas/fisiologia , Adenosina Trifosfatases/genética , Animais , Proteínas de Bactérias/genética , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Canais Iônicos/genética , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Oócitos , Transporte Proteico/fisiologia , Canais de Translocação SEC , Proteínas SecA , Especificidade por Substrato/fisiologia , Xenopus laevis
14.
Bioorg Med Chem ; 18(4): 1617-25, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-20096592

RESUMO

SecA ATPase is a critical member of the Sec family, which is important in the translocation of membrane and secreted polypeptides/proteins in bacteria. Small molecule inhibitors can be very useful research tools as well as leads for future antimicrobial agent development. Based on previous virtual screening work, we optimized the structures of two hit compounds and obtained SecA ATPase inhibitors with IC(50) in the single digit micromolar range. These represent the first low micromolar synthetic inhibitors of bacterial SecA and will be very useful for mechanistic studies.


Assuntos
Adenosina Trifosfatases/antagonistas & inibidores , Proteínas de Bactérias/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos , Escherichia coli/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Proteínas de Membrana Transportadoras , Testes de Sensibilidade Microbiana , Modelos Moleculares , Modelos Teóricos , Canais de Translocação SEC , Proteínas SecA , Espectrometria de Massas por Ionização por Electrospray
15.
J Bacteriol ; 190(4): 1413-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18065528

RESUMO

SecA is an essential component in the Sec-dependent protein translocation pathway and, together with ATP, provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. Previous studies established that SecA undergoes monomer-dimer equilibrium in solution. However, the oligomeric state of functional SecA during the protein translocation process is controversial. In this study, we provide additional evidence that SecA functions as a dimer in the membrane by (i) demonstration of the capability of the presumably monomeric SecA derivative to be cross-linked as dimers in vitro and in vivo, (ii) complementation of the growth of a secA(Ts) mutant with another nonfunctional SecA or (iii) in vivo complementation and in vitro function of a genetically tandem SecA dimer that does not dissociate into monomers, and (iv) formation of similar ring-like structures by the tandem SecA dimer and SecA in the presence of lipid bilayers. We conclude that SecA functions as a dimer in the membrane and dissociation into monomers is not necessary during protein translocation.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Dimerização , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/genética , Microscopia de Força Atômica , Mutação , Transporte Proteico , Canais de Translocação SEC , Proteínas SecA
16.
IEEE Trans Nanobioscience ; 6(2): 168-79, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17695753

RESUMO

SecA is an important component of protein translocation in bacteria, and exists in soluble and membrane-integrated forms. Most membrane prediction programs predict SecA as being a soluble protein, with the exception of TMpred and Top-Pred. However, the membrane associated predicted segments by TMpred and TopPred are inconsistent across bacterial species in spite of high sequence homology. In this paper we describe a new method for membrane protein prediction, PSSM_SVM, which provides consistent results for integral membrane domains of SecAs across bacterial species. This PSSM encoding scheme demonstrates the highest accuracy in terms of Q2 among the common prediction methods, and produces consistent results on blind test data. None of the previously described methods showed this kind of consistency when tested against the same blind test set. This scheme predicts traditional transmembrane segments and most of the soluble proteins accurately. The PSSM scheme applied to the membrane-associated protein SecA shows characteristic features. In the set of 223 known SecA sequences, the PSSM_SVM prediction scheme predicts eight to nine residue embedded membrane segments. This predicted region is part of a 12 residue helix from known X-ray crystal structures of SecAs. This information could be important for determining the structure of SecA proteins in the membrane which have different conformational properties from other transmembrane proteins, as well as other soluble proteins that may similarly integrate into lipid bi-layers.


Assuntos
Adenosina Trifosfatases/química , Proteínas de Bactérias/química , Membrana Celular/química , Proteínas de Membrana Transportadoras/química , Modelos Químicos , Modelos Moleculares , Análise de Sequência de Proteína/métodos , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Inteligência Artificial , Proteínas de Bactérias/metabolismo , Simulação por Computador , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Reconhecimento Automatizado de Padrão , Canais de Translocação SEC , Proteínas SecA , Solubilidade
17.
Bioorg Med Chem Lett ; 17(3): 707-11, 2007 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-17150357

RESUMO

Maintaining a proper balance of metal concentrations is critical to the survival of bacteria. We have designed and synthesized a series of conjugates of metal chelators and efflux transporter substrates aimed at disrupting bacterial metal homeostasis to achieve bacterial killing. Biological studies showed that two of the compounds had very significant antimicrobial effect with an MIC value of 7.8 microg/mL against Gram-positive Bacillus subtilis.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Quelantes/síntese química , Quelantes/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Escherichia coli/efeitos dos fármacos , Indicadores e Reagentes , Metais/metabolismo , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
18.
Protein Expr Purif ; 50(2): 179-84, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16904905

RESUMO

A secA gene from Pseudomonas aeruginosa PAO1 was amplified and expressed in Escherichia coli BL21.19 (secA13) under conditions where E. coli SecA was depleted. The binding of P. aeruginosa SecA (PaSecA) to the SP-Sepharose column was facilitated by ammonium sulfate fractionation but was not necessary for E. coli SecA (EcSecA) as the later bound more efficiently. PaSecA and EcSecA were purified by the single chromatographic step to greater than 98% purity and had a recovery of more than 20 and 40%, respectively, from the soluble fraction. This simple step purification obtained a higher homogeneity than previously reported. Cross-reactivity by immunoblotting showed that the purified PaSecA contained little EcSecA if any. The purified PaSecA is a dimer in solution, as judged by size exclusion chromatography, and is slightly larger than its counterpart EcSecA with an estimated molecular weight of 240 kDa. Further studies by the sedimentation velocity method indicate that PaSecA tends to remain as a monomer in solution. The purified PaSecA possessed ATPase activity; the intrinsic and liposome-stimulated ATPase specific activities of PaSecA were approximately 50% of EcSecA.


Assuntos
Adenosina Trifosfatases/isolamento & purificação , Proteínas de Bactérias/isolamento & purificação , Proteínas de Membrana Transportadoras/isolamento & purificação , Pseudomonas aeruginosa/enzimologia , Adenosina Trifosfatases/química , Adenosina Trifosfatases/imunologia , Anticorpos/imunologia , Proteínas de Bactérias/química , Proteínas de Bactérias/imunologia , Reações Cruzadas , Dimerização , Ativação Enzimática , Escherichia coli/enzimologia , Lipossomos/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Canais de Translocação SEC , Proteínas SecA
19.
Protein Expr Purif ; 47(2): 629-33, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16427308

RESUMO

Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium which secretes a wide range of hydrolytic enzymes, toxins, and virulence factors into the extracellular medium. Although P. aeruginosa possesses numerous specific systems for the export of proteins across its double-membrane envelopes, the Sec system is still the major and essential mechanism. However, very little is known about its molecular basis. We constructed, cloned, and expressed the N-terminal 236 amino acids of PaSecA domain (PaSecAN236), and SecAL43P mutants of P. aeruginosa in Escherichia coli BL21.19 (secA(ts)). Here, we describe the purification of PaSecAN236 by using osmotic shock as the first step to efficiently release targeted protein from cells, followed by cation-exchange and size exclusion columns to obtain homogeneous PaSecAN236. The purified PaSecA N-terminal domain was functional in stimulating the ATPase activity of mutant SecAL43P protein of P. aeruginosa.


Assuntos
Adenosina Trifosfatases/biossíntese , Adenosina Trifosfatases/isolamento & purificação , Substituição de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/isolamento & purificação , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/isolamento & purificação , Pseudomonas aeruginosa/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Adenosina Trifosfatases/genética , Proteínas de Bactérias/genética , Expressão Gênica , Proteínas de Membrana Transportadoras/genética , Estrutura Terciária de Proteína/genética , Proteínas Recombinantes/genética , Canais de Translocação SEC , Proteínas SecA
20.
J Exp Biol ; 209(Pt 1): 78-88, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16354780

RESUMO

Sea hares protect themselves from predatory attacks with several modes of chemical defenses. One of these is inking, which is an active release of a protective fluid upon predatory attack. In many sea hares including Aplysia californica and A. dactylomela, this fluid is a mixture of two secretions from two separate glands, usually co-released: ink, a purple fluid from the ink gland; and opaline, a white viscous secretion from the opaline gland. These two secretions are mixed in the mantle cavity and directed toward the attacking predator. Some of the chemicals in these secretions and their mechanism of action have been identified. In our study, we used western blots, immunocytochemistry, amino acid analysis, and bioassays to examine the distribution of these components: (1) an L-amino acid oxidase called escapin for A. californica and dactylomelin-P for A. dactylomela, which has antimicrobial activity but we believe its main function is in defending sea hares against predators that evoke its release; and (2) escapin's major amino acid substrates--L-lysine and L-arginine. Escapin is exclusively produced in the ink gland and is not present in any other tissues or secretions. Furthermore, escapin is only sequestered in the amber vesicles of the ink glandand not in the red-purple vesicles, which contain algal-derived chromophores that give ink its distinctive purple color. The concentration of escapin and dactylomelin-P in ink, both in the gland and after its release, is as high as 2 mg ml(-1), or 30 micromol ml(-1), which is well above its antimicrobial threshold. Lysine and arginine (and other amino acids) are packaged into vesicles in the ink and opaline glands, but arginine is present in ink and opaline at <1 mmol l(-1) and lysine is present in ink at <1 mmol l(-1) but in opaline at 65 mmol l(-1). Our previous results showed that both lysine and arginine mediate escapin's bacteriostatic effects, but only lysine mediates its bactericidal effects. Given that escapin's antimicrobial effects require concentrations of lysine and/or arginine >1 mmol l(-1), our data lead us to conclude that lysine in opaline is the primary natural substrate for escapin in ink. Furthermore, packaging of the enzyme escapin and its substrate lysine into two separate glands and their co-release and mixing at the time of predatory attack allows for the generation of bioactive defensive compounds from innocuous precursors at the precise time they are needed. Whether lysine and/or arginine are substrates for escapin's antipredatory functions remains to be determined.


Assuntos
Aplysia/química , Misturas Complexas/análise , Glândulas Exócrinas/química , Aminoácido Oxirredutases/análise , Aminoácidos/análise , Animais , Antibacterianos/análise , Antibacterianos/isolamento & purificação , Arginina/análise , Western Blotting , Misturas Complexas/isolamento & purificação , Imuno-Histoquímica , Lisina/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...