Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 11565, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078932

RESUMO

Electron work function (EWF) has demonstrated its great promise in materials analysis and design, particularly for single-phase materials, e.g., solute selection for optimal solid-solution strengthening. Such promise is attributed to the correlation of EWF with the atomic bonding and stability, which largely determines material properties. However, engineering materials generally consist of multiple phases. Whether or not the overall EWF of a complex multi-phase material can reflect its properties is unclear. Through investigation on the relationships among EWF, microstructure, mechanical and electrochemical properties of low-carbon steel samples with two-level microstructural inhomogeneity, we demonstrate that the overall EWF does carry the information on integrated electron behavior and overall properties of multiphase alloys. This study makes it achievable to develop "electronic metallurgy"-an electronic based novel alternative methodology for materials design.

2.
Nanoscale ; 12(17): 9366-9374, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32338265

RESUMO

Group-III monochalcogenides of two-dimensional (2D) layered materials have attracted widespread attention among scientists due to their unique electronic performance and interesting chemical and physical properties. Indium sulfide (InS) is attracting increasing interest from scientists because it has two distinct crystal structures. However, studies on the synthesis of highly crystalline, large-area, and atomically thin-film InS have not been reported thus far. Here, the chemical vapor deposition (CVD) synthesis method of atomic InS crystals has been reported in this paper. The direct chemical vapour phase reaction of metal oxides with chalcogen precursors produces a large-sized hexagonal crystal structure and atomic-thickness InS flakes or films. The InS atomic films are merged with a plurality of triangular InS crystals that are uniform and entire and have surface areas of 1 cm2 and controllable thicknesses in bilayers or trilayers. The properties of the as-grown highly crystalline samples were characterized by spectroscopic and microscopic measurements. The ion-gel gated InS field-effect transistors (FETs) reveal n-type transport behavior, and have an on-off current ratio of >103 and a room-temperature electron mobility of ∼2 cm2 V-1 s-1. Moreover, our CVD InS can be transferred from mica to any substrates, so various 2D materials can be reassembled into vertically stacked heterostructures, thus facilitating the development of heterojunctions and exploration of the properties and applications of their interactions.

3.
Microsc Res Tech ; 82(1): 4-11, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29675879

RESUMO

Convergent beam electron diffraction (CBED) in transmission electron microscopy (TEM) was applied to determine local carbon concentrations in low-carbon transformation-induced plasticity (TRIP) steels. High-order Laue-zone (HOLZ) lines were experimentally obtained for comparison with simulation results. A new procedure for calculating carbon content is thus proposed. Retained austenite (RA) is classified into three types by morphology; the relationship between the carbon content and the corresponding RA morphology is discussed based on CBED results. Furthermore, results of X-Ray diffractometry measurements are also used for comparison.

4.
Sci Rep ; 7(1): 4735, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680111

RESUMO

Negative voltage modulated multi-level resistive switching with quantum conductance during staircase-type RESET and its transport characteristics in Cr/BaTiOx/TiN structure have been investigated for the first time. The as-deposited amorphous BaTiOx film has been confirmed by high-resolution transmission electron microscopy. X-ray photo-electron spectroscopy shows different oxidation states of Ba in the switching material, which is responsible for tunable more than 10 resistance states by varying negative stop voltage owing to slow decay value of RESET slope (217.39 mV/decade). Quantum conductance phenomenon has been observed in staircase RESET cycle of the memory devices. By inspecting the oxidation states of Ba+ and Ba2+ through measuring H2O2 with a low concentration of 1 nM in electrolyte/BaTiOx/SiO2/p-Si structure, the switching mechanism of each HRS level as well as the multi-level phenomenon has been explained by gradual dissolution of oxygen vacancy filament. Along with negative stop voltage modulated multi-level, current compliance dependent multi-level has also been demonstrated and resistance ratio up to 2000 has been achieved even for a thin (<5 nm) switching material. By considering oxidation-reduction of the conducting filaments, the current-voltage switching curve has been simulated as well. Hence, multi-level resistive switching of Cr/BaTiOx/TiN structure implies the promising applications in high dense, multistate non-volatile memories in near future.

5.
Nanoscale Res Lett ; 11(1): 434, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27680740

RESUMO

A 15-nm-thick GdO x membrane in an electrolyte-insulator-semiconductor (EIS) structure shows a higher pH sensitivity of 54.2 mV/pH and enzyme-free hydrogen peroxide (H2O2) detection than those of the bare SiO2 and 3-nm-thick GdO x membranes for the first time. Polycrystalline grain and higher Gd content of the thicker GdO x films are confirmed by transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS), respectively. In a thicker GdO x membrane, polycrystalline grain has lower energy gap and Gd(2+) oxidation states lead to change Gd(3+) states in the presence of H2O2, which are confirmed by electron energy loss spectroscopy (EELS). The oxidation/reduction (redox) properties of thicker GdO x membrane with higher Gd content are responsible for detecting H2O2 whereas both bare SiO2 and thinner GdO x membranes do not show sensing. A low detection limit of 1 µM is obtained due to strong catalytic activity of Gd. The reference voltage shift increases with increase of the H2O2 concentration from 1 to 200 µM owing to more generation of Gd(3+) ions, and the H2O2 sensing mechanism has been explained as well.

6.
Sci Rep ; 5: 13671, 2015 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-26329829

RESUMO

High threading dislocation (TD) density in GaN-based devices is a long unresolved problem because of the large lattice mismatch between GaN and the substrate, which causes a major obstacle for the further improvement of next-generation high-efficiency solid-state lighting and high-power electronics. Here, we report InGaN/GaN LEDs with ultralow TD density and improved efficiency on a sapphire substrate, on which a near strain-free GaN compliant buffer layer was grown by remote plasma atomic layer deposition. This "compliant" buffer layer is capable of relaxing strain due to the absorption of misfit dislocations in a region within ~10 nm from the interface, leading to a high-quality overlying GaN epilayer with an unusual TD density as low as 2.2 × 10(5) cm(-2). In addition, this GaN compliant buffer layer exhibits excellent uniformity up to a 6" wafer, revealing a promising means to realize large-area GaN hetero-epitaxy for efficient LEDs and high-power transistors.

7.
Nanoscale Res Lett ; 9(1): 12, 2014 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-24400888

RESUMO

Enhanced resistive switching phenomena of IrOx/GdOx/W cross-point memory devices have been observed as compared to the via-hole devices. The as-deposited Gd2O3 films with a thickness of approximately 15 nm show polycrystalline that is observed using high-resolution transmission electron microscope. Via-hole memory device shows bipolar resistive switching phenomena with a large formation voltage of -6.4 V and high operation current of >1 mA, while the cross-point memory device shows also bipolar resistive switching with low-voltage format of +2 V and self-compliance operation current of <300 µA. Switching mechanism is based on the formation and rupture of conducting filament at the IrOx/GdOx interface, owing to oxygen ion migration. The oxygen-rich GdOx layer formation at the IrOx/GdOx interface will also help control the resistive switching characteristics. This cross-point memory device has also Repeatable 100 DC switching cycles, narrow distribution of LRS/HRS, excellent pulse endurance of >10,000 in every cycle, and good data retention of >104 s. This memory device has great potential for future nanoscale high-density non-volatile memory applications.

8.
Nanoscale Res Lett ; 9(1): 35, 2014 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-24433437

RESUMO

Conductive and transparent multilayer thin films consisting of three alternating layers (TiO2/Ag/SiO2, TAS) have been fabricated for applications as transparent conducting oxides. Metal oxide and metal layers were prepared by electron-beam evaporation with ion-assisted deposition, and the optical and electrical properties of the resulting films as well as their energy bounding characteristics and microstructures were carefully investigated. The optical properties of the obtained TAS material were compared with those of well-known transparent metal oxide glasses such as ZnO/Ag/ZnO, TiO2/Ag/TiO2, ZnO/Cu/ZnO, and ZnO/Al/ZnO. The weathering resistance of the TAS film was improved by using a protective SiO2 film as the uppermost layer. The transmittance spectra and sheet resistance of the material were carefully measured and analyzed as a function of the layer thickness. By properly adjusting the thickness of the metal and dielectric films, a low sheet resistance of 6.5 ohm/sq and a high average transmittance of over 89% in the 400 to 700 nm wavelength regions were achieved. We found that the Ag layer played a significant role in determining the optical and electrical properties of this film.

9.
Nanoscale Res Lett ; 7(1): 304, 2012 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-22697503

RESUMO

Transparent conducting ZnO/Ag/ZnO multilayer electrodes having electrical resistance much lower than that of widely used transparent electrodes were prepared by ion-beam-assisted deposition (IAD) under oxygen atmosphere. The optical parameters were optimized by admittance loci analysis to show that the transparent conducting oxide (TCO) film can achieve an average transmittance of 93%. The optimum thickness for high optical transmittance and good electrical conductivity was found to be 11 nm for Ag thin films and 40 nm for ZnO films, based on the admittance diagram. By designing the optical thickness of each ZnO layer and controlling process parameters such as IAD power when fabricating dielectric-metal-dielectric films at room temperature, we can obtain an average transmittance of 90% in the visible region and a bulk resistivity of 5 × 10-5 Ω-cm. These values suggest that the transparent ZnO/Ag/ZnO electrodes are suitable for use in dye-sensitized solar cells.

10.
Nanoscale Res Lett ; 7(1): 194, 2012 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-22439604

RESUMO

Improved resistive switching memory characteristics by controlling the formation polarity in an IrOx/Al2O3/IrOx-ND/Al2O3/WOx/W structure have been investigated. High density of 1 × 1013/cm2 and small size of 1.3 nm in diameter of the IrOx nano-dots (NDs) have been observed by high-resolution transmission electron microscopy. The IrOx-NDs, Al2O3, and WOx layers are confirmed by X-ray photo-electron spectroscopy. Capacitance-voltage hysteresis characteristics show higher charge-trapping density in the IrOx-ND memory as compared to the pure Al2O3 devices. This suggests that the IrOx-ND device has more defect sites than that of the pure Al2O3 devices. Stable resistive switching characteristics under positive formation polarity on the IrOx electrode are observed, and the conducting filament is controlled by oxygen ion migration toward the Al2O3/IrOx top electrode interface. The switching mechanism is explained schematically based on our resistive switching parameters. The resistive switching random access memory (ReRAM) devices under positive formation polarity have an applicable resistance ratio of > 10 after extrapolation of 10 years data retention at 85°C and a long read endurance of 105 cycles. A large memory size of > 60 Tbit/sq in. can be realized in future for ReRAM device application. This study is not only important for improving the resistive switching memory performance but also help design other nanoscale high-density nonvolatile memory in future.

11.
J Am Chem Soc ; 133(30): 11614-20, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21682313

RESUMO

In this study, we investigated the interplay of three-dimensional morphologies and the photocarrier dynamics of polymer/inorganic nanocrystal hybrid photoactive layers consisting of TiO(2) nanoparticles and nanorods. Electron tomography based on scanning transmission electron microscopy using high-angle annular dark-field imaging was performed to analyze the morphological organization of TiO(2) nanocrystals in poly(3-hexylthiophene) (P3HT) in optimal solar cell devices. The Three-dimensional (3D) morphologies of these hybrid films were correlated with the photocarrier dynamics of charge separation, transport, and recombination, which were comprehensively probed by various transient techniques. Visualization of these 3D bulk heterojunction morphologies clearly reveals that elongated and anisotropic TiO(2) nanorods in P3HT not only can significantly reduce the probability of the interparticle hopping transport of electrons by providing better connectivity with respect to the TiO(2) nanoparticles, but also tend to form a large-scale donor-acceptor phase-separated morphology, which was found to enhance hole transport. The results support the establishment of a favorable morphology for polymer/inorganic hybrid solar cells due to the presence of the dimensionality of TiO(2) nanocrystals as a result of more effective mobile carrier generation and more efficient and balanced transport of carriers.


Assuntos
Fontes de Energia Elétrica , Energia Solar , Tiofenos/química , Titânio/química , Nanoestruturas/química , Tamanho da Partícula , Propriedades de Superfície
12.
Nanotechnology ; 20(44): 445202, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19801782

RESUMO

Si nanocrystals embedded in a SiO2 matrix and an n-type Al-doped ZnO (ZnO:Al) layer were applied to improve the external quantum efficiency from Si in n- ZnO/SiO2-Si nanocrystals-SiO2/p-Si heterojunction light-emitting diodes (LEDs). The Si nanocrystals were grown by low pressure chemical vapor deposition and the ZnO:Al layer was prepared by atomic layer deposition. The n-type ZnO:Al layer acts as an electron injection layer, a transparent conductive window, and an anti-reflection coating to increase the light extraction efficiency. Owing to the spatial confinement of carriers and surface passivation by the surrounding SiO2, the Si nanocrystals embedded in the SiO2 matrix lead to a significant enhancement of the light emission efficiency from Si. An external quantum efficiency up to 4.3 x 10(-4) at the wavelength corresponding to the indirect bandgap of Si was achieved at room temperature.

13.
Nanotechnology ; 20(16): 165201, 2009 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-19420563

RESUMO

This study demonstrates amplified spontaneous emission (ASE) of the ultraviolet (UV) electroluminescence (EL) from ZnO at lambda~380 nm in the n-ZnO/ZnO nanodots-SiO(2) composite/p- Al(0.12)Ga(0.88)N heterojunction light-emitting diode. A SiO(2) layer embedded with ZnO nanodots was prepared on the p-type Al(0.12)Ga(0.88)N using spin-on coating of SiO(2) nanoparticles followed by atomic layer deposition (ALD) of ZnO. An n-type Al-doped ZnO layer was deposited upon the ZnO nanodots-SiO(2) composite layer also by the ALD technique. High-resolution transmission electron microscopy (HRTEM) reveals that the ZnO nanodots embedded in the SiO(2) matrix have diameters of 3-8 nm and the wurtzite crystal structure, which allows the transport of carriers through the thick ZnO nanodots-SiO(2) composite layer. The high quality of the n-ZnO layer was manifested by the well crystallized lattice image in the HRTEM picture and the low-threshold optically pumped stimulated emission. The low refractive index of the ZnO nanodots-SiO(2) composite layer results in the increase in the light extraction efficiency from n-ZnO and the internal optical feedback of UV EL into n-ZnO layer. Consequently, significant enhancement of the UV EL intensity and super-linear increase in the EL intensity, as well as the spectral narrowing, with injection current were observed owing to ASE in the n-ZnO layer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...