Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Prog ; 107(3): 368504241263435, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39096047

RESUMO

Water and foam have different fire-extinguishing mechanisms. Traditional foam and compressed air foam (CAF) have different bubble structures. These differences result in different thermal characteristics, which affect the extinguishing abilities during a fire. In this study, the differences in the thermal characteristics of three different extinguishing agents (water, traditional foam, and CAF) were investigated by suppressing a compartment fire. With an ignition source in the compartment (6 m × 3 m × 3 m), the agent was preferentially applied to the outside wall of the compartment. The effects of internal cooling and burnback resistance generated from the outer wall were evaluated. The performance of each agent in shielding firefighters from radiant heat while suppressing the fire inside the compartment was evaluated. When the outside wall of the compartment was covered with each of the agents, all agents were found to reduce the room temperature. When CAF was applied, the delay time until temperature re-rise was approximately 1.76-4.5 times longer than that when water was used. In addition, foaming agents exhibited a higher heat-shielding effect than water during the initial suppression. Thus, considering the thermal characteristics of these agents, fire suppression can be more effective if foam agents are used.

2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38267085

RESUMO

Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.


Assuntos
Arabidopsis , Rodófitas , Alga Marinha , Alga Marinha/genética , Criptocromos/metabolismo , Rodófitas/genética , Ritmo Circadiano/genética , Arabidopsis/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA