Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Psychiatry ; 13(11): 912-918, 2023 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-38073906

RESUMO

BACKGROUND: The psychological state of patients with post stroke limb movement disorders undergoes a series of changes that affect rehabilitation training and recovery of limb motor function. AIM: To determine the correlation between motor rehabilitation and the psychological state of patients with limb movement disorders after stroke. METHODS: Eighty patients with upper and lower limb dysfunction post stroke were retrospectively enrolled in our study. Based on Hospital Anxiety and Depression Scale (HADS) scores measured before rehabilitation, patients with HADS scores ≥ 8 were divided into the psychological group; otherwise, the patients were included in the normal group. Motor function and daily living abilities were compared between the normal and psychological groups. Correlations between the motor function and psychological status of patients, and between daily living ability and psychological status of patients were analyzed. RESULTS: After 1, 2, and 3 wk of rehabilitation, both the Fugl-Meyer assessment and Barthel index scores improved compared to their respective baseline scores (P < 0.05). A greater degree of improvement was observed in the normal group compared to the psychological group (P < 0.05). There was a negative correlation between negative emotions and limb rehabilitation (-0.592 ≤ r ≤ -0.233, P < 0.05), and between negative emotions and daily living ability (-0.395 ≤ r ≤ -0.199, P < 0.05). CONCLUSION: There is a strong correlation between motor rehabilitation and the psychological state of patients with post stroke limb movement disorders. The higher the negative emotions, the worse the rehabilitation effect.

2.
Int J Environ Health Res ; : 1-11, 2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669754

RESUMO

Few studies have been conducted that use biomarkers as early warning signals for noise-associated health hazards. To explore potentially effective biomarkers for noise-exposed populations, we recruited 218 noise-exposed male workers in China. We calculated cumulative noise exposure (CNE) through noise intensity and noise-exposed duration. When the model was fully adjusted, ln-transformed relative mitochondrial DNA copy number (mtDNAcn) decreased by 0.014 (95% confidence interval (CI): -0.026, -0.003) units with each 1 dB(A)∙year increase in CNE levels. CNE was further included in the model as a grouping variable, and the results showed a negative dose-effect relationship between relative mtDNAcn and CNE (P-trend = 0.045). However, we did not find a correlation between CNE and micronucleus (MN) frequencies. Our findings suggest that CNE in workers was associated with a decrease in relative mtDNAcn which may provide a potential biomarker for noise and for certain health risk but not with MN frequencies.

3.
Mol Psychiatry ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36914810

RESUMO

Recent studies based on animal models of various neurological disorders have indicated that mitophagy, a selective autophagy that eliminates damaged and superfluous mitochondria through autophagic degradation, may be involved in various neurological diseases. As an important mechanism of cellular stress response, much less is known about the role of mitophagy in stress-related mood disorders. Here, we found that tumor necrosis factor-α (TNF-α), an inflammation cytokine that plays a particular role in stress responses, impaired the mitophagy in the medial prefrontal cortex (mPFC) via triggering degradation of an outer mitochondrial membrane protein, NIP3-like protein X (NIX). The deficits in the NIX-mediated mitophagy by TNF-α led to the accumulation of damaged mitochondria, which triggered synaptic defects and behavioral abnormalities. Genetic ablation of NIX in the excitatory neurons of mPFC caused passive coping behaviors to stress, and overexpression of NIX in the mPFC improved TNF-α-induced synaptic and behavioral abnormalities. Notably, ketamine, a rapid on-set and long-lasting antidepressant, reversed the TNF-α-induced behavioral abnormalities through activation of NIX-mediated mitophagy. Furthermore, the downregulation of NIX level was also observed in the blood of major depressive disorder patients and the mPFC tissue of animal models. Infliximab, a clinically used TNF-α antagonist, alleviated both chronic stress- and inflammation-induced behavioral abnormalities via restoring NIX level. Taken together, these results suggest that NIX-mediated mitophagy links inflammation signaling to passive coping behaviors to stress, which underlies the pathophysiology of stress-related emotional disorders.

4.
Huan Jing Ke Xue ; 43(7): 3825-3834, 2022 Jul 08.
Artigo em Chinês | MEDLINE | ID: mdl-35791565

RESUMO

A field experiment was conducted to study the effects of different organic material amendments on soil respiration in a flue-cured tobacco field. Five treatments were set up:no fertilizer (NF), chemical fertilizer (NPK), chemical fertilizer+ryegrass (NPKG), chemical fertilizer+wheat straw (NPKS), and chemical fertilizer+tobacco straw biochar (NPKB). The results showed that:① Compared with that under NPK, NPKG and NPKS decreased the temperature sensitivity (Q10) of total soil respiration and heterotrophic respiration, whereas NPKB increased the Q10 of heterotrophic respiration. The two-factor fitting model of soil respiration and soil hydrothermal factors accounted for 50%-80% of the variation in soil respiration. ② The addition of organic materials significantly increased the content of soil soluble organic carbon (DOC) and root dry matter. Soil heterotrophic respiration(Rh) was significantly positively correlated with DOC content, and soil autotrophic respiration(Ra) was significantly parabolically correlated with root biomass, with an R2 of 0.327-0.634. ③ Soil respiration increased first and then decreased during the tobacco growth period. Compared with that under the NF treatment, the NPK treatment significantly promoted soil respiration and its components. Compared with those of the NPK treatment, Rsrates were significantly increased by 20.08%, 10.32%, and 9.88% under the NPKG, NPKS, and NPKB treatments, respectively; Rh rate increased by 24.21%, 16.51%, and 11.68% respectively, and Ra rate was increased by 15.12% in the NPKG treatment. In summary, straw returning and biochar addition significantly increased Rh by increasing soil DOC, thereby promoting Rs. Incorporation of ryegrass not only increased the Rh but also increased Ra by promoting the growth and development of roots and therefore the Rs.


Assuntos
Nicotiana , Solo , Fertilizantes/análise , Respiração , Solo/química , Microbiologia do Solo
5.
World Neurosurg ; 158: e488-e494, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34767993

RESUMO

OBJECTIVE: To investigate impact of ulinastatin (UTI) on sigma-1 receptor (σ1R) and binding immunoglobulin protein (BiP) after cerebral ischemia/reperfusion injury. METHODS: The middle cerebral artery occlusion (MCAO) model was used to induce cerebral ischemia/reperfusion injury. Eighty male Sprague Dawley rats were randomly divided into 6 groups: control, MCAO, MCAO+50,000 U/kg UTI, MCAO+100,000 U/kg UTI, MCAO+200,000 U/kg UTI, MCAO+300,000 U/kg UTI. At 24 and 48 hours after MCAO, infarct volume, neurological dysfunction, and grip strength test were measured, and level of σ1R and BiP proteins was further detected using Western blot. Molecular docking assays were carried out to verify interaction between σ1R, BiP, and UTI. The serum concentration of BiP and the binding assay between σ1R, BiP, and UTI were determined using enzyme-linked immunosorbent assay. RESULTS: UTI increased the modified neurological severity score and upregulated σ1R and BiP expression in the cerebral cortex after MCAO. The grip strength of forelimbs increased significantly in the MCAO+200,000 U/kg UTI and MCAO+300,000 U/kg UTI groups compared with the MCAO group, while BiP serum levels remained unchanged. The molecular docking assay indicated putative binding between σ1R, BiP, and UTI. The binding assay also revealed that both σ1R and BiP could be combined with UTI. CONCLUSIONS: UTI displays a neuroprotective effect via upregulation of σ1R and BiP during ischemia/reperfusion injury, suggesting that UTI modulates σ1R and BiP and their interaction may provide a novel insight into potential therapeutic mechanisms for stroke.


Assuntos
Isquemia Encefálica , Proteínas de Choque Térmico , Fármacos Neuroprotetores , Receptores sigma , Traumatismo por Reperfusão , Animais , Isquemia Encefálica/tratamento farmacológico , Glicoproteínas , Proteínas de Choque Térmico/metabolismo , Imunoglobulinas/metabolismo , Imunoglobulinas/uso terapêutico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Masculino , Simulação de Acoplamento Molecular , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores sigma/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Receptor Sigma-1
6.
Mol Autism ; 9: 34, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29796238

RESUMO

Background: Past studies have shown that robot-based intervention was effective in improving gestural use in children with autism spectrum disorders (ASD). The present study examined whether children with ASD could catch up to the level of gestural production found in age-matched children with typical development and whether they showed an increase in verbal imitation after the completion of robot-based training. We also explored the cognitive and motor skills associated with gestural learning. Methods: Children with ASD were randomly assigned to two groups. Four- to 6-year-old children with ASD in the intervention group (N = 15) received four 30-min robot-based gestural training sessions. In each session, a social robot, NAO, narrated five stories and gestured (e.g., both hands clapping for an awesome expression). Children with ASD were told to imitate the gestures during training. Age-matched children with ASD in the wait-list control group (N = 15) and age-matched children with typical development (N = 15) received the gestural training after the completion of research. Standardized pretests and posttests (both immediate and delayed) were administered to assess the accuracy and appropriateness of gestural production in both training and novel stories. Children's language and communication abilities, gestural recognition skills, fine motor proficiencies, and attention skills were also examined. Results: Children with ASD in the intervention condition were more likely to produce accurate or appropriate intransitive gestures in training and novel stories than those in the wait-list control. The positive learning outcomes were maintained in the delayed posttests. The level of gestural production accuracy in children with ASD in the delayed posttest of novel stories was comparable to that in children with typical development, suggesting that children with ASD could catch up to the level of gestural production found in children with typical development. Children with ASD in the intervention condition were also more likely to produce verbal markers while gesturing than those in the wait-list control. Gestural recognition skills were found to significantly predict the learning of gestural production accuracy in the children with ASD, with such relation partially mediated via spontaneous imitation. Conclusions: Robot-based intervention may reduce the gestural delay in children with ASD in their early childhood.


Assuntos
Transtorno do Espectro Autista/reabilitação , Intervenção Educacional Precoce/métodos , Gestos , Robótica/métodos , Povo Asiático , Transtorno do Espectro Autista/etnologia , Criança , Desenvolvimento Infantil , Pré-Escolar , Feminino , Humanos , Idioma , Masculino
7.
Chemistry ; 23(55): 13583-13586, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28796921

RESUMO

In this study, α-TiP layered structure incorporating a heterometal center for organic ligand binding to enhance structural complexity and functionality were prepared. The protons of the α-TiP layer were replaced with zinc ions coordinated by 4-pyridinecarboxylic acid (PCA) and water to form a layer structure, TiZn(PO4 )2 (H2 O)(PCA) (1). The tetrahedral zinc center with coordinated water in 1 is unprecedented in zincophosphate or zinc-MOF systems and is usually only found in metalloenzyme systems. The neutral zincotitanophosphate layers, tightly stacked through hydrogen bonds, showed velcro-like behavior on intercalating 4,4'-trimethylenedipyridine (TMDP) reversibly. It rendered a remarkable luminescence property to 1, emitting blue-to-white light under UV excitation. Surprisingly, the replacement of TMDP for PCA in the hydrothermal synthesis still resulted in 1, plus another structure, Ti4 Zn2 (H2 TPB)(PO4 )4 (HPO4 )4 (H2 PO4 )2 (2) (TPB=1,2,4,5-tetra(4-pyridyl)benzene). Clearly, in situ C-C cracking and C-C coupling of TMDP simultaneously occurred to generate PCA and TPB and thereafter the oxidant, Zn(NO3 )2 , was quantitatively determined to isolate crystal 1 from 2. The structure of 2 also featured α-TiP layers with pedant Zn tetrahedra but formed a three-dimensional neutral framework through TPB. For the first time, α-TiP-derived structures and their properties have been elucidated, which help in understanding intriguing in situ ligand formation and intercalation-induced luminescence, to exploit potential photocatalysis in polymerization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...