Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 234
Filtrar
1.
Bioresour Technol ; 402: 130820, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38729583

RESUMO

This study investigated the effects of enhanced biological phosphorus removal (EBPR) on rapid sludge bulking control and fast aerobic granular sludge (AGS) formation by adding 20 % of EBPR activated sludge to the bulking activated sludge (BAS) reactor. The results indicate that activating EBPR activity swiftly improved BAS settleability within 16 days, thus resolving sludge bulking issues. Subsequently, a settling time-based selection was employed, resulting in the BAS granulation within another 16 days. The rapid achievement of EBPR activity improved the BAS settleability and facilitated the formation of sludge aggregates, thereby expediting BAS granulation. Inhibition of filamentous bacteria and enrichment of slow-growing organisms contributed to both sludge bulking control and aerobic granulation. Furthermore, the increase in proteins/polysaccharides ratio facilitated the granulation process. Additionally, total nitrogen removal increased from 59.4 % to 71.7 % because of the mature AGS formation. This study provided an approach to simultaneously control sludge bulking and promote aerobic granulation.

2.
BMC Biol ; 22(1): 106, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715001

RESUMO

BACKGROUND: The significance of A-to-I RNA editing in nervous system development is widely recognized; however, its influence on retina development remains to be thoroughly understood. RESULTS: In this study, we performed RNA sequencing and ribosome profiling experiments on developing mouse retinas to characterize the temporal landscape of A-to-I editing. Our findings revealed temporal changes in A-to-I editing, with distinct editing patterns observed across different developmental stages. Further analysis showed the interplay between A-to-I editing and alternative splicing, with A-to-I editing influencing splicing efficiency and the quantity of splicing events. A-to-I editing held the potential to enhance translation diversity, but this came at the expense of reduced translational efficiency. When coupled with splicing, it could produce a coordinated effect on gene translation. CONCLUSIONS: Overall, this study presents a temporally resolved atlas of A-to-I editing, connecting its changes with the impact on alternative splicing and gene translation in retina development.


Assuntos
Biossíntese de Proteínas , Edição de RNA , Retina , Animais , Camundongos , Retina/metabolismo , Retina/embriologia , Processamento Alternativo , Inosina/metabolismo , Inosina/genética , Adenosina/metabolismo
3.
BMC Pulm Med ; 24(1): 220, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702679

RESUMO

BACKGROUND: Recent research suggests that periodontitis can increase the risk of chronic obstructive pulmonary disease (COPD). In this study, we performed two-sample Mendelian randomization (MR) and investigated the causal effect of periodontitis (PD) on the genetic prediction of COPD. The study aimed to estimate how exposures affected outcomes. METHODS: Published data from the Gene-Lifestyle Interaction in the Dental Endpoints (GLIDE) Consortium's genome-wide association studies (GWAS) for periodontitis (17,353 cases and 28,210 controls) and COPD (16,488 cases and 169,688 controls) from European ancestry were utilized. This study employed a two-sample MR analysis approach and applied several complementary methods, including weighted median, inverse variance weighted (IVW), and MR-Egger regression. Multivariable Mendelian randomization (MVMR) analysis was further conducted to mitigate the influence of smoking on COPD. RESULTS: We chose five single-nucleotide polymorphisms (SNPs) as instrumental variables for periodontitis. A strong genetically predicted causal link between periodontitis and COPD, that is, periodontitis as an independent risk factor for COPD was detected. PD (OR = 1.102951, 95% CI: 1.005-1.211, p = 0.039) MR-Egger regression and weighted median analysis results were coincident with those of the IVW method. According to the sensitivity analysis, horizontal pleiotropy's effect on causal estimations seemed unlikely. However, reverse MR analysis revealed no significant genetic causal association between COPD and periodontitis. IVW (OR = 1.048 > 1, 95%CI: 0.973-1.128, p = 0.2082) MR Egger (OR = 0.826, 95%CI:0.658-1.037, p = 0.1104) and weighted median (OR = 1.043, 95%CI: 0.941-1.156, p = 0.4239). The results of multivariable Mendelian randomization (MVMR) analysis, after adjusting for the confounding effect of smoking, suggest a potential causal relationship between periodontitis and COPD (P = 0.035). CONCLUSION: In this study, periodontitis was found to be independent of COPD and a significant risk factor, providing new insights into periodontitis-mediated mechanisms underlying COPD development.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Polimorfismo de Nucleotídeo Único , Doença Pulmonar Obstrutiva Crônica , Fumar , Humanos , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Fatores de Risco , Fumar/epidemiologia , Fumar/efeitos adversos , Periodontite/genética , Periodontite/epidemiologia , Índice de Gravidade de Doença , Predisposição Genética para Doença , Doenças Periodontais/genética , Doenças Periodontais/epidemiologia
4.
Shock ; 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38662604

RESUMO

OBJECTIVES: Sepsis is defined as a life-threatening disease associated with a dysfunctional host immune response. Stratified identification of critically ill patients might significantly improve the survival rate. The present study sought to probe molecular markers associated with cuproptosis in septic patients to aid in stratification and improve prognosis. METHODS: We studied expression of cuproptosis-related genes (CRGs) using peripheral blood samples from septic patients. Further classification was made by examining levels of expression of these potential CRGs in patients. Coexpression networks were constructed using the weighted gene coexpression network analysis (WGCNA) method to identify crucial prognostic CRGs. Additionally, we utilized immune cell infiltration analysis to further examine the immune status of septic patients with different subtypes and its association with the CRGs. ScRNA-seq data were also analysed to verify expression of key CRGs among specific immune cells. Finally, immunoblotting, flow cytometry, immunofluorescence, and CFSE analysis were used to investigate possible regulatory mechanisms. RESULTS: We classified septic patients based on CRG expression levels and found significant differences in prognosis and gene expression patterns. Three key CRGs that may influence the prognosis of septic patients were identified. A decrease in GLS expression was subsequently verified in Jurkat cells, accompanied by a reduction in O-GlcNAc levels, and chelation of copper by TTM could not rescue the reduction in GLS and O-GLcNAc levels. Moreover, immoderate chelation of copper was detrimental to mitochondrial function, cell viability and cell proliferation as well as the immune status of the host. CONCLUSION: We have identified novel molecular markers associated with cuproptosis, which could potentially function as diagnostic indicators for septic patients. The reversible nature of the observed alterations in FDX1 and LIAS was demonstrated through copper chelation, while the correlation between copper and the observed changes in GLS requires further investigation.

5.
Eco Environ Health ; 3(2): 117-130, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38638172

RESUMO

Polyethylene terephthalate (PET), one of the most ubiquitous engineering plastics, presents both environmental challenges and opportunities for carbon neutrality and a circular economy. This review comprehensively addressed the latest developments in biotic and abiotic approaches for PET recycling/upcycling. Biotically, microbial depolymerization of PET, along with the biosynthesis of reclaimed monomers [terephthalic acid (TPA), ethylene glycol (EG)] to value-added products, presents an alternative for managing PET waste and enables CO2 reduction. Abiotically, thermal treatments (i.e., hydrolysis, glycolysis, methanolysis, etc.) and photo/electrocatalysis, enabled by catalysis advances, can depolymerize or convert PET/PET monomers in a more flexible, simple, fast, and controllable manner. Tandem abiotic/biotic catalysis offers great potential for PET upcycling to generate commodity chemicals and alternative materials, ideally at lower energy inputs, greenhouse gas emissions, and costs, compared to virgin polymer fabrication. Remarkably, over 25 types of upgraded PET products (e.g., adipic acid, muconic acid, catechol, vanillin, and glycolic acid, etc.) have been identified, underscoring the potential of PET upcycling in diverse applications. Efforts can be made to develop chemo-catalytic depolymerization of PET, improve microbial depolymerization of PET (e.g., hydrolysis efficiency, enzymatic activity, thermal and pH level stability, etc.), as well as identify new microorganisms or hydrolases capable of degrading PET through computational and machine learning algorithms. Consequently, this review provides a roadmap for advancing PET recycling and upcycling technologies, which hold the potential to shape the future of PET waste management and contribute to the preservation of our ecosystems.

6.
Neurotoxicology ; 102: 81-95, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599287

RESUMO

BACKGROUND: Propofol can increase neurotoxicity in infants but the precise mechanism is still unknown. Our previous study revealed that nuclear FMR1 interacting protein 1 (NUFIP1), a specific ribophagy receptor, can alleviate T cell apoptosis in sepsis. Yet, the effect of NUFIP1-engineered exosomes elicited from human umbilical cord blood mesenchymal stem cells (hUMSCs) on nerve injury induced by propofol remains unclear. This study intended to investigate the effect of NUFIP1-engineered exosomes on propofol-induced nerve damage in neonatal rats. METHODS: Firstly, NUFIP1-engineered exosomes were extracted from hUMSCs serum and their identification was conducted using transmission electron microscopy (TEM), Flow NanoAnalyzer, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot (WB). Subsequently, the optimal exposure duration and concentration of propofol induced apoptosis were determined in SH-SY5Y cell line using WB. Following this, we co-cultured the NUFIP1-engineered exosomes in the knockdown group (NUFIP1-KD) and overexpression group (NUFIP1-OE) with SH-SY5Y cells and assessed their effects on the apoptosis of SH-SY5Y cells using terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) assay, Hoechst 33258 staining, WB, and flow cytometry, respectively. Finally, NUFIP1-engineered exosomes were intraperitoneally injected into neonatal rats, and their effects on the learning and memory ability of neonatal rats were observed through the righting reflex and Morris water maze (MWM) test. Hippocampi were extracted from different groups for hematoxylin-eosin (HE) staining, immunohistochemistry, immunofluorescence, and WB to observe their effects on apoptosis in neonatal rats. RESULTS: TEM, Flow NanoAnalyzer, qRT-PCR, and WB analyses confirmed that the exosomes extracted from hUMSCs serum exhibited the expected morphology, diameter, surface markers, and expression of target genes. This confirmed the successful construction of NUFIP1-KD and NUFIP1-OE-engineered exosomes. Optimal exposure duration and concentration of propofol were determined to be 24 hours and 100 µg/ml, respectively. Co-culture of NUFIP1 engineered exosomes and SH-SY5Y cells resulted in significant up-regulation of pro-apoptotic proteins Bax and c-Caspase-3 in the KD group, while anti-apoptotic protein Bcl-2 was significantly decreased. The OE group showed the opposite trend. TUNEL apoptosis assay, Hoechst 33258 staining, and flow cytometry yielded consistent results. Animal experiments demonstrated that intraperitoneal injection of NUFIP1-KD engineered exosomes prolonged the righting reflex recovery time of newborn rats, and MWM tests revealed a significant diminution in the time and number of newborn rats entering the platform. HE staining, immunohistochemistry, immunofluorescence, and WB results also indicated a significant enhancement in apoptosis in this group. Conversely, the experimental results of neonatal rats in the OE group revealed a certain degree of anti-apoptotic effect. CONCLUSIONS: NUFIP1-engineered exosomes from hUMSCs have the potential to regulate nerve cell apoptosis and mitigate neurological injury induced by propofol in neonatal rats. Targeting NUFIP1 may hold great significance in ameliorating propofol-induced nerve injury.

7.
Sci Total Environ ; 930: 172365, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38641118

RESUMO

Mining tailings containing large amounts of Pb and Cd cause severe regional ecosystem pollution. Soil microorganisms play a regulatory role in the restoration of degraded ecosystems. The remediation of heavy metal-contaminated tailings with amendments and economically valuable Eucalyptus camaldulensis is a research hotspot due to its cost-effectiveness and sustainability. However, the succession and co-occurrence patterns of these microbial communities in this context remain unclear. Tailing samples of five kinds of Cd and Pb were collected in E. camaldulensis restoration models. Physicochemical properties, the proportions of different Cd and Pb forms, microbial community structure, and the co-occurrence network of rhizosphere tailings during different restoration process (organic bacterial manure, organic manure, inorganic fertilizer, bacterial agent) were considered. Organic and organic bacterial manures significantly increased pH, cation exchange capacity, and the proportion of residual Pb. Still, there was a significant decrease in the proportion of reducible Pb. The changes in microbial communities were related to physicochemical properties and the types of amendments. Organic and organic bacterium manures decreased the relative abundance of oligotrophic groups and increased the relative abundance of syntrophic groups. Inorganic fertilizers and bacterial agents decreased the relative abundance of saprophytic fungi. B. subtilis would play a better role in the environment improved by organic manure, increasing the relative abundance of beneficial microorganism and reducing the relative abundance of pathogenic microorganism. pH, cation exchange capacity, and the proportion of different forms of Pb were the main factors affecting the bacterial and fungi variation. All four amendments transformed the main critical groups of the microbial network structure from acidophilus and pathogenic microorganisms to beneficial microorganisms. Heavy metal-resistant microorganisms, stress-resistant microorganisms, beneficial microorganisms that promote nutrient cycling, and copiotrophic groups have become critical to building stable rhizosphere microbial communities. The topological properties and stability of the rhizosphere co-occurrence network were also enhanced. Adding organic and organic bacterium manures combined with E. camaldulensis to repair Cd and Pb tailings improved (1) pH and cation exchange capacity, (2) reduced the biological toxicity of Pb, (3) enhanced the stability of microbial networks, and (4) improved ecological network relationships. These positive changes are conducive to the restoration of the ecological functions of tailings.


Assuntos
Cádmio , Eucalyptus , Chumbo , Mineração , Rizosfera , Microbiologia do Solo , Poluentes do Solo , Chumbo/análise , Poluentes do Solo/análise , Cádmio/análise , Microbiota , Fertilizantes , Bactérias , Recuperação e Remediação Ambiental/métodos , Biodegradação Ambiental
8.
Med Image Anal ; 94: 103139, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493532

RESUMO

The availability of big data can transform the studies in biomedical research to generate greater scientific insights if expert labeling is available to facilitate supervised learning. However, data annotation can be labor-intensive and cost-prohibitive if pixel-level precision is required. Weakly supervised semantic segmentation (WSSS) with image-level labeling has emerged as a promising solution in medical imaging. However, most existing WSSS methods in the medical domain are designed for single-class segmentation per image, overlooking the complexities arising from the co-existence of multiple classes in a single image. Additionally, the multi-class WSSS methods from the natural image domain cannot produce comparable accuracy for medical images, given the challenge of substantial variation in lesion scales and occurrences. To address this issue, we propose a novel anomaly-guided mechanism (AGM) for multi-class segmentation in a single image on retinal optical coherence tomography (OCT) using only image-level labels. AGM leverages the anomaly detection and self-attention approach to integrate weak abnormal signals with global contextual information into the training process. Furthermore, we include an iterative refinement stage to guide the model to focus more on the potential lesions while suppressing less relevant regions. We validate the performance of our model with two public datasets and one challenging private dataset. Experimental results show that our approach achieves a new state-of-the-art performance in WSSS for lesion segmentation on OCT images.


Assuntos
Pesquisa Biomédica , Tomografia de Coerência Óptica , Humanos , Retina/diagnóstico por imagem , Semântica , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina Supervisionado
9.
Front Med (Lausanne) ; 11: 1346165, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38487027

RESUMO

Background: Sarcopenia adversely affects the treatment outcomes in Cirrhosis and NAFLD. However, such research is limited in primary biliary cholangitis (PBC) patients. This study was performed to examine the prevalence of sarcopenia and its impact on PBC patients' prognoses. Methods: This study enrolled confirmed PBC patients who had an abdominal CT scan. Sarcopenia was determined by the L3-skeletal muscle index with a Chinese population-based cut-off value. Laboratory test values and liver stiffness measurements values were obtained from the electronic medical records. Results: In total, 174 PBC patients with a median age of 54 (IQR, 48, 62) years old, were enrolled. 45 (25.9%) patients among them were diagnosed with sarcopenia. Univariate and multivariate logistic regression results illustrated that male gender (OR = 9.152, 95%CI = 3.131-26.751, p < 0.001) and LSM ≥ 12.8 kPa (OR = 4.539, 95%CI = 1.651, 12.478, p = 0.003) were the independent risk factors of sarcopenia in PBC patients. In the prognosis analysis, sarcopenia was determined as a risk factor for indicating adverse events in PBC patients (HR = 4.058, 95%CI = 1.955-8.424, p < 0.001) by Cox proportional hazards regression. Conclusion: The current findings illustrate that comprehensive evaluation and management of sarcopenia may contribute to the improvement of treatment outcomes and life quality of PBC patients.

10.
Int J Med Mushrooms ; 26(4): 53-61, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38523449

RESUMO

Air humidity is an important environmental factor restricting the fruit body growth of Auricularia heimuer. Low air humidity causes the fruit body to desiccate and enter dormancy. However, the survival mechanisms to low air humidity for fruit bodies before dormancy remain poorly understood. In the present study, we cultivated A. heimuer in a greenhouse and collected the fruit bodies at different air humidities (90%, 80%, 70%, 60%, and 50%) to determine the contents of malondialdehyde (MDA) and non-enzymatic antioxidants such as ascorbic acid (AsA) and glutathione (GSH); and the activities of enzymatic antioxidants including superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), glutathione peroxidase (GPX) and glutathione reductase (GR). Results showed that the MDA contents tended to increase with decreasing relative air humidity. Relative air humidity below 90% caused membrane lipid peroxidation and oxidative stress (based on MDA contents) to the fruit body, which we named air humidity stress. In contrast to the control and with the degree of stress, the GSH contents and activities of SOD, CAT, GR, GPX, and APX tended to ascend, whereas AsA showed a declining trend; the POD activity only rose at 50%. The antioxidants favored the fruit body to alleviate oxidative damage and strengthened its tolerance to air humidity stress. The antioxidant defense system could be an important mechanism for the fruit body of A. heimuer in air humidity stress.


Assuntos
Antioxidantes , Auricularia , Basidiomycota , Antioxidantes/metabolismo , Umidade , Frutas/metabolismo , Catalase/metabolismo , Ácido Ascórbico , Estresse Oxidativo , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Redutase/metabolismo , Basidiomycota/metabolismo , Peroxidação de Lipídeos
11.
Environ Sci Pollut Res Int ; 31(17): 25202-25215, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38466381

RESUMO

Laccase immobilized and cross-linked on Fe3S4/earthworm-like mesoporous SiO2 (Fe3S4/EW-mSiO2) was used to degrade methoxychlor (MXC) in aqueous environments. The effects of various parameters on the degradation of MXC were determined using free and immobilized laccase. Immobilization improved the thermal stability and reuse of laccase significantly. Under the conditions of pH 4.5, temperature 40 °C, and reaction time 8 h, the degradation rate of MXC by immobilized laccase reached a maximum value of 40.99% and remained at 1/3 of the original after six cycles. The excellent degradation performance of Fe3S4/EW-mSiO2 was attributable to the pyrite (FeS2) impurity in Fe3S4, which could act as an electron donor in reductive dehalogenation. Sulfide groups and Fe2+ reduced the activation energy of the system resulting in pyrite-assisted degradation of MXC. The degradation mechanism of MXC in aqueous environments by laccase immobilized on Fe3S4/EW-mSiO2 was determined via mass spectroscopy of the degradation products. This study is a new attempt to use pyrite to support immobilized laccase degradation.


Assuntos
Ferro , Metoxicloro , Oligoquetos , Animais , Metoxicloro/química , Enzimas Imobilizadas/química , Lacase/metabolismo , Dióxido de Silício/química , Oligoquetos/metabolismo , Sulfetos
12.
Helicobacter ; 29(2): e13059, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38443329

RESUMO

BACKGROUND: Vonoprazan, a novel acid suppressant, has recently emerged as a regimen for eradicating Helicobacter pylori. However, uncertainties exist about the effectiveness and safety of VPZ-based regimens compared with those of bismuth-based quadruple therapy in eradicating H. pylori. The present meta-analysis was performed to compare the effectiveness and safety of vonoprazan-based regimens with those of bismuth quadruple therapy in eradicating H. pylori. MATERIALS AND METHODS: All randomized controlled trials and non-randomized controlled trials comparing the vonoprazan-based therapy with the bismuth quadruple therapy were included in this meta-analysis. Information was also extracted by two evaluators, and if heterogeneity existed, a random-effects model was used to calculate the combined relative ratio and 95% confidence interval; otherwise, a fixed-effects model was used. And subgroup analyses were performed to explore the sources of heterogeneity. RESULTS: A total of 10 studies, comprising 2587 patients were included in the meta-analysis. The results showed that the combined eradication rate of patients treated with the vonoprazan-based regimen was significantly higher than that of patients treated with bismuth quadruple therapy, in both intention-to-treat and per-protocol analyses, and the differences were statistically significant. Among the intention-to-treat analyses results: (90.28% vs. 83.64% [odds ratio (OR) = 1.85, 95% confidence interval (CI) (1.27, 2.70), p = 0.001]); in the per-protocol analyses: (94.80% vs. 89.88%, [OR = 2.25, 95% CI (1.37, 3.69), p = 0.001]). The occurrence of adverse events was significantly lower in patients treated with vonoprazan-based regimens than in those treated with bismuth quadruple therapy, (14.50% vs. 25.89%, [OR = 0.49, 95% CI (0.32, 0.75), p = 0.001]). CONCLUSIONS: For eradicating H. pylori, vonoprazan-based regimens are remarkably advantageous over bismuth quadruple therapy. Furthermore, vonoprazan-based regimens exhibit a lower rate of adverse events than bismuth quadruple therapy.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Sulfonamidas , Humanos , Bismuto/efeitos adversos , Infecções por Helicobacter/tratamento farmacológico , Pirróis/efeitos adversos
13.
Hepatol Commun ; 8(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38466884

RESUMO

BACKGROUND: Hepatic fibrosis is a progressive disease, which is reversible in the early stages. The current monitoring methods have notable limitations that pose a challenge to early detection. In this study, we evaluated the utility of [18F]AlF-ND-bisFAPI positron emission tomography imaging of fibroblast activation protein (FAP) to monitor the progression of liver fibrosis. METHODS: Two mouse models of liver fibrosis were established by bile duct ligation and carbon tetrachloride administration, respectively. Positron emission tomography imaging was performed with the FAP-specific radiotracer [18F]AlF-ND-bisFAPI for the evaluation of rat HSCs and mouse models of fibrosis and combined with histopathology, immunohistochemical staining, and immunoblotting to elucidate the relationships among radioactivity uptake, FAP levels, and liver fibrosis progression. Furthermore, [18F]AlF-ND-bisFAPI autoradiography was performed to assess tracer binding in liver sections from patients with varying degrees of liver fibrosis. RESULTS: Cell experiments demonstrated that [18F]AlF-ND-bisFAPI uptake was specific in activated HSCs. Compared with control mice, [18F]AlF-ND-bisFAPI uptake in livers increased in the early stages of fibrosis and increased significantly further with disease progression. Immunohistochemistry and western blot analyses demonstrated that FAP expression increased with fibrosis severity. In accordance with the findings in animal models, ex vivo autoradiography on human fibrotic liver sections showed that radioactivity increased as fibrosis progressed from mild to severe. CONCLUSIONS: [18F]AlF-ND-bisFAPI positron emission tomography imaging is a promising noninvasive method for monitoring the progression of liver fibrosis.


Assuntos
Cirrose Hepática , Tomografia por Emissão de Pósitrons , Humanos , Ratos , Camundongos , Animais , Tomografia por Emissão de Pósitrons/métodos , Cirrose Hepática/diagnóstico por imagem , Cirrose Hepática/patologia , Modelos Animais de Doenças , Biomarcadores , Fibroblastos/patologia
14.
J Environ Manage ; 356: 120613, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38547824

RESUMO

The disintegration and instability of aerobic granular sludge (AGS) systems during long-term operation pose significant challenges to its practical implementation, and rapid recovery strategies for disintegrated AGS are gaining more attention. In this study, the recovery and re-stabilization of disintegrated AGS was investigated by adding chitosan to a sequencing batch reactor and simultaneously adjusting the pH to slightly acidic condition. Within 7 days, chitosan addition under slight acidity led to the re-aggregation of disintegrated granules, increasing the average particle size from 166.4 µm to 485.9 µm. Notably, sludge volume indexes at 5 min (SVI5) and 30 min (SVI30) decreased remarkably from 404.6 mL/g and 215.1 mL/g (SVI30/SVI5 = 0.53) to 49.1 mL/g and 47.6 mL/g (SVI30/SVI5 = 0.97), respectively. Subsequent operation for 43 days successfully re-stabilized previous collapsed AGS system, resulting in an average particle size of 750.2 µm. These mature and re-stabilized granules exhibited characteristics of large particle size, excellent settleability, compact structure, and high biomass retention. Furthermore, chitosan facilitated the recovery of COD and nitrogen removal performances within 17-23 days of operation. It effectively facilitated the rapid aggregation of disintegrated granules by charge neutralization and bridging effects under a slightly acidic environment. Moreover, the precipitated chitosan acted as carriers, promoting the adhesion of microorganisms once pH control was discontinued. The results of batch tests and microbial community analysis confirmed that chitosan addition increased sludge retention time, enriching slow-growing microorganisms and enhancing the stability and pollutant removal efficiency of the AGS system.


Assuntos
Quitosana , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos , Aerobiose , Nitrogênio/química
15.
Front Med (Lausanne) ; 11: 1342119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38327703

RESUMO

Background: The etiological factors of Cholestatic Liver Diseases especially primary sclerosing cholangitis (PSC) and primary biliary cholangitis (PBC) are not fully illustrated. It has been reported in previous observational studies that gut microbiota are associated with cholestatic liver diseases. However, there is uncertainty regarding the causality of this association. By using Mendelian randomization, this study aimed to examine the causal impact of gut microbiota on cholestatic liver diseases. Methods: From large-scale genome-wide association studies, genetic instruments for each gut microbiota taxa as well as primary biliary cholangitis and primary sclerosing cholangitis were developed. Subsequently, we conducted a two-sample Mendelian randomization analysis, supplemented by multiple post hoc sensitivity analyses. Additionally, we performed reverse MR analyses to investigate the possibility of the reverse causal association. Result: This two-sample MR study indicated that the order Bacillales, family Peptostreptococcaceae, family Ruminococcaceae, genus Anaerotruncu was associated with a decreased risk of developing PBC, and that order Selenomonadales, family Bifidobacteriaceae may be factors that increase the risk of PBC. On the other hand, we also identified order Selenomonadales, family Rhodospirillaceae, and genus RuminococcaceaeUCG013 were positively associated with PSC. The order Actinomycetales, family Actinomycetaceae, genus Actinomyces, genus Alloprevotella, genus Barnesiella, and genus Peptococcus were found negative associations with the risk of PSC. The reverse MR analysis demonstrated no statistically significant relationship between PBC, PSC and these specific gut microbial taxa. Conclusion: Our findings offered novel evidence that the abundance of particular bacteria contributes to the risk of PBC and PSC, which may contribute to more effective approaches to PBC and PSC therapy and prevention.

16.
Cardiovasc J Afr ; 34: 1-9, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38407248

RESUMO

BACKGROUND: Patients with atrial fibrillation (AF) and dilated cardiomyopathy (DCM) often exhibit cardiac dysfunction and a poor prognosis. However, the specific reasons are unclear. This study aimed to describe the impact of obesity in patients with AF and DCM. METHODS: Seventy-four consecutive patients with AF and DCM were enrolled and classified by body mass index. We measured primary endpoints, including cardiac death, recurrent AF, recurrent atrial tachyarrhythmia and stroke, as well as secondary endpoints. RESULTS: In multivariate analysis, compared to the normal-weight group, the overweight and obese groups had greater incidences of recurrent AF (0.0 vs 30.3 vs 40.0%, respectively, log-rank p = 0.048) and rehospitalisation (9.1 vs 36.4 vs 45.0%, respectively, log-rank p = 0.035). Compared to the normal-weight group, five-year outcomes for primary endpoints were inferior in the overweight and obese groups (18.2 vs 30.3 vs 50.0%, respectively, log-rank p = 0.042). Overweight patients exhibited more benefit in recovery of left ventricular ejection fraction after ablation (from 39.1 to 50.0%, p = 0.005) than the normal-weight group (from 43.1 to 52.3%, p = 0.199) and obese group (from 44.9 to 51.2%, p = 0.216). CONCLUSION: Patients with AF and DCM with overweight or obesity exhibited worse long-term outcomes in recurrent AF than normal-weight patients. However, overweight patients showed the most benefit in cardiac function after ablation.

17.
J Chem Phys ; 160(6)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38349626

RESUMO

Expanding the pool of stable halide perovskites with attractive optoelectronic properties is crucial to addressing current limitations in their performance as photovoltaic (PV) absorbers. In this article, we demonstrate how a high-throughput density functional theory (DFT) dataset of halide perovskite alloys can be used to train accurate surrogate models for property prediction and subsequently perform inverse design using genetic algorithm (GA). Our dataset consists of decomposition energies, bandgaps, and photovoltaic efficiencies of nearly 800 pure and mixed composition ABX3 compounds from both the GGA-PBE and HSE06 functionals, and are combined with ∼100 experimental data points collected from the literature. Multi-fidelity random forest regression models are trained on the DFT + experimental dataset for each property using descriptors that one-hot encode composition, phase, and fidelity, and additionally include well-known elemental or molecular properties of species at the A, B, and X sites. Rigorously optimized models are deployed for experiment-level prediction over >150 000 hypothetical compounds, leading to thousands of promising materials with low decomposition energy, band gap between 1 and 2 eV, and efficiency of >15%. Surrogate models are further combined with GA using an objective function to maintain chemical feasibility, minimize decomposition energy, maximize PV efficiency, and keep bandgap between 1 and 2 eV; thus, hundreds more optimal compositions and phases are discovered. We present an analysis of the screened and inverse-designed materials, visualize ternary phase diagrams generated for many systems of interest using machine learning predictions, and suggest strategies for further improvement and expansion in the future.

18.
J Magn Reson Imaging ; 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38299767

RESUMO

BACKGROUND: Serum creatinine (Scr) may be not suited to timely and accurately reflect kidney injury related to chronic liver disease. Currently, the ability of arterial spin labeling (ASL) and blood oxygen level-dependent (BOLD) sequences to evaluate renal blood flow (RBF) and blood oxygen in chronic liver disease remains to be verified. PURPOSE: To investigate the value of ASL and BOLD imaging in evaluating hemodynamics and oxygenation changes during kidney injury in an animal model of chronic liver disease. STUDY TYPE: Prospective. ANIMAL MODEL: Chronic liver disease model was established by subcutaneous injection of carbon tetrachloride. Forty-three male Sprague-Dawley rats (8 weeks) were divided into a pathological group (0, 2, 4, 6, 8, 12 weeks, each group: N = 6) and a continuous-scanning group (N = 7). FIELD STRENGTH/SEQUENCE: 3-T, ASL, BOLD, and T2W. ASSESSMENT: Regions of interest in the cortex (CO), outer stripe of the outer medulla (OSOM), and inner stripe of the outer medulla (ISOM) are manually delineated. The RBF and T2* values at each time point (0, 2, 4, 6, 8, 12 weeks) are measured and compared. Hematoxylin-eosin score (HE Score, damage area scoring method), alpha-smooth muscle actin (α-SMA), hypoxia-inducible factor-1alpha (HIF-1α), peritubular capillar (PTC) density, Scr, and neutrophil gelatinase-associated lipocalin were harvested. STATISTICAL TESTS: Analysis of variance, Spearman correlation analysis, Kruskal-Wallis tests, and receiver operating characteristic analysis with the area under the curve (AUC). A P-value <0.05 was considered statistically significant. RESULTS: Renal RBF and T2* values of CO, OSOM, and ISOM were significantly different from baseline. Both RBF and T2* were significantly correlated with HE Score, α-SMA, HIF-1α, and PTC density (|r| = 0.406-0.853). RBF demonstrated superior diagnostic capability in identifying severe kidney injury in this model of chronic liver disease (AUC = 0.964). DATA CONCLUSION: Imaging by ASL and BOLD may detect renal hemodynamics and oxygenation changes related to chronic liver disease early. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 2.

19.
Soft Matter ; 20(3): 629-639, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38163997

RESUMO

The application of hydrogels in an underwater environment is limited due to their swelling behavior and the existence of a hydration layer. In this study, a hydrogel based on poly(sulfobetaine methacrylate) (PSBMA), tannic acid (TA) and montmorillonite (MMT) was prepared with excellent anti-swelling properties and underwater self-adhesion properties. The PSBMA hydrogel has excellent anti-swelling properties due to the strong electrostatic interaction between charged groups of PSBMA chains. Inspired by marine mussels, tannic acid modified montmorillonite (TA@MMT) was introduced. Natural polyphenol tannic acid, as a catechol donor, provides a large number of catechol groups for hydrogels. Montmorillonite acts as the physical cross-linking point of PSBMA chains through electrostatic interaction to improve the cohesion of the hydrogel. By combining the adhesion mechanism of zwitterions and catechol, the hydrogel maintains adhesion in air and underwater environments. In addition, a strain sensor was prepared based on the PSBMA/TA@MMT hydrogel, which can closely fit the human skin and stably monitor different movements in air and in underwater environments. Through a Bluetooth communication system, long-distance information transmission can be achieved. Therefore, the PSBMA/TA@MMT hydrogel broadens the application prospect of wearable devices in the underwater environment.

20.
Clin Case Rep ; 12(1): e8416, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38188846

RESUMO

Key Clinical Message: Patients with aortic valve replacement (AVR) for severe aortic stenosis (AS) will cause reversibility systolic anterior motion (SAM). This may occur because of afterload reduction caused by the relief of the AS and the prolonged anterior mitral valve. It is important to evaluate the mechanism of SAM by intraoperative real-time transesophageal echocardiography (TEE). Abstract: This case video describes the presentation and successful treatment of a 58-year-old man who experienced post-AVR SAM with dynamic (left ventricle outflow tract) LVOT obstruction. This case highlights the fact that patients with AVR for severe AS may cause reversible SAM. This may occur because of afterload reduction caused by the relief of the AS combined with the prolonged anterior mitral valve. It is important to evaluate the mechanism of SAM by intraoperative real-time TEE and then make the surgical decision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...