Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mikrochim Acta ; 190(7): 265, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336828

RESUMO

Novel detection method has been developed to explore changes in mechanical bending angles on a bilayer of polyethylene terephthalate (PET) and molecularly imprinted polymer (MIP). For an ovalbumin (OVA)-imprinted hydrogel layer, functional monomers were employed to achieve sufficient binding effect in the polymer matrix. The OVA amount added in the MIP precursor solution and the dimensions of OVA-imprinted hydrogel (MIH) strips were controlled to maximize the change in bending angles as an OVA sensing response within a valid detection range. The sensing behaviors were determined by monitoring the difference in the bending angles via protein adsorption based on the swelling-induced deformation of the OVA-extracted hydrogel (E-MIH) strip. The equilibrium adsorption capacity of the E-MIH strip was calculated via the Bradford protein assay. The detection limit, quantification limit, and imprinting factor were calculated. To compare the selectivity coefficients, the adsorption behaviors of three proteins were investigated. Finally, the reusability of the E-MIH strip was explored via repeated adsorption and extraction. Based on the results, the E-MIH strips demonstrated a promising protein sensing platform monitoring mechanical bending angles affected by swelling deformation.


Assuntos
Hidrogéis , Proteínas , Ovalbumina , Polímeros , Polímeros Molecularmente Impressos
2.
ACS Sens ; 8(6): 2298-2308, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37261931

RESUMO

In this study, a chalcone-branched polyimide (CB-PI) was synthesized by the Steglich esterification reaction for selective recognition of the toxic peptide melittin (MEL). MEL was immobilized on a nanopatterned poly(dimethylsiloxane) (PDMS) mold using a conventional surface modification technique to increase binding sites. A stripe-nanopatterned thin CB-PI film was formed on a quartz crystal (QC) substrate by simultaneously performing microcontact printing and ultraviolet (UV) light dimerization using a MEL-immobilized mold. The surface morphology changes and dimensions of the molecularly imprinted polymer (MIP) films with stripe nanopatterns (S-MIP) were analyzed using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The sensing signals (Δf and Qe) of the S-MIP sensor were investigated upon adsorption in a 100-µL dilute plasma solution containing 30 µg/mL MEL, and its reproducibility, reuse, stability, and durability were investigated. The S-MIP sensor showed high sensitivity (5.49 mL/mg) and coefficient of determination (R2 = 0.999), and the detection limit (LOD) and the quantification limit (LOQ) were determined as 0.3 and 1.1 µg/mL, respectively. In addition, the selectivity coefficients (k*) calculated from the selectivity tests were 2.7-5.7, 2.1-4.3, and 2.8-4.6 for bovine serum albumin (BSA), immunoglobulin G (IgG), and apamin (APA), respectively. Our results indicate that the nanopatterned MIP sensors based on CB-PI demonstrate great potential as a sensing tool for the quantitative analysis of biomolecules.


Assuntos
Chalconas , Impressão Molecular , Impressão Molecular/métodos , Meliteno , Técnicas de Microbalança de Cristal de Quartzo/métodos , Reprodutibilidade dos Testes , Polímeros/química
3.
Anal Chim Acta ; 1251: 341018, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925304

RESUMO

Influenza viruses are known to cause pandemic flu through inter-human and animal-to-human transmissions. Neuraminidase (NA), which is a surface glycoprotein of both influenza A and B viruses, is a minor immunogenic determinant; however, it has been proposed as an ideal candidate for a real testing. We successfully identified an affinity peptide which is specific to the influenza H5N1 virus NA via phage display technique and observed initially its binding affinities using enzyme-linked immunosorbent assay (ELISA). In addition, four synthetic peptides were chemically synthesized to develop an affinity peptide-based electrochemical biosensing system. Among all peptides tested, INA BP2 was selected as a potential candidate and subjected to square-wave voltammetry (SWV) for evaluating their detection performance. To enhance analytical performance, a three-dimensional porous bovine serum albumin (BSA)-MXene (BSA/MXene) matrix was applied. The surface morphology of the BSA/MXene film-deposited electrode was analyzed using X-ray photoelectron spectroscopy (XPS), field-emission scanning electron microscopy (FE-SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Using SWV measurement, the BSA/MXene nanocomposite-based peptide sensor exhibited significant the dissociation constant (Kd = 9.34 ± 1.20 nM) and the limit of detection (LOD, 0.098 nM), resulting in good reproducibility, stability and recovery, even in the presence with spiked human plasma. These results demonstrate an alternative way of new bioanalytical sensing platform for developing more desirable sensitivity in other virus detection.


Assuntos
Técnicas Biossensoriais , Virus da Influenza A Subtipo H5N1 , Influenza Humana , Nanocompostos , Animais , Humanos , Soroalbumina Bovina/química , Influenza Humana/diagnóstico , Porosidade , Reprodutibilidade dos Testes , Peptídeos , Nanocompostos/química , Eletrodos , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Limite de Detecção
4.
Chem Commun (Camb) ; 58(49): 6934-6937, 2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35638878

RESUMO

A visual observation of the bending angle changes for the novel and easy detection of proteins is introduced in this study by fabricating bovine serum albumin (BSA) imprinted hydrogel strips with a one sided 3D porous structure using a combination of polystyrene colloidal crystal templating and the molecular imprinting approach using BSA as the template protein and several functional monomers.


Assuntos
Hidrogéis , Impressão Molecular , Poliestirenos , Porosidade , Soroalbumina Bovina/química
5.
Biosens Bioelectron ; 204: 114073, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35144170

RESUMO

In this study, protein-imprinted sensors were electrochemically fabricated on screen-printed carbon electrodes (SPCEs) for the cytokine interleukin-1ß (IL-1ß) detection. A double layer comprising poly(o-phenylenediamine) and poly(chromotrope 2R) with a template (i.e., IL-1ß biomacromolecules) was formed through the cyclic voltammetry (CV) technique to modify the molecularly imprinted polymer (MIP) films on the SPCEs. The electrochemical sensing properties were investigated via CV and electrochemical impedance spectroscopy to confirm the imprinting effect on the MIP films. The results show that the MIP sensor has a highly sensitive response in the trace IL-1ß solution (a few pg/mL) with a limit of detection of 0.23 pg/mL and a limit of quantification of 0.78 pg/mL. Furthermore, the MIP sensor showed high selectivity for IL-1ß adsorption compared to other proteins. In summary, based on binary double layers, the impedance sensing platforms of electropolymerized MIP films show potential application in the practical detection of macromolecular proteins.


Assuntos
Técnicas Biossensoriais , Impressão Molecular , Técnicas Biossensoriais/métodos , Carbono/química , Técnicas Eletroquímicas/métodos , Eletrodos , Interleucina-1beta , Limite de Detecção , Polímeros Molecularmente Impressos
6.
Small ; 17(52): e2105733, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34854553

RESUMO

Rotating cylindrical stamp-based nanoimprint technique has many advantages, including the continuous fabrication of intriguing micro/nanostructures and rapid pattern transfer on a large scale. Despite these advantages, the previous nanoimprint lithography has rarely been used for producing sophisticated nanoscale patterns on a non-planar substrate that has many extended applications. Here, the simple integration of nanoimprinting process with a help of a transparent stamp wrapped on the cylindrical roll and UV optical source in the core to enable high-throughput pattern transfer, particularly on a fabric substrate is demonstrated. Moreover, as a functional resin material, this innovative strategy involves a synergistic approach on the synthesis of molecularly imprinted polymer, which are spatially organized free-standing perforated nanostructures such as nano/microscale lines, posts, and holes patterns on various woven or nonwoven blank substrates. The proposed materials can serve as a self-encoded filtration medium for selective separation of formaldehyde molecules. It is envisioned that the combinatorial fabrication process and attractive material paves the way for designing next-generation separation systems in use to capture industrial or household toxic substances.


Assuntos
Polímeros Molecularmente Impressos , Nanoestruturas , Impressão
7.
Biomacromolecules ; 22(4): 1523-1531, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33617232

RESUMO

Molecularly imprinted polymers (MIPs) represent an intriguing class of synthetic materials that can selectively recognize and bind chemical or biological molecules in a variety of value-added applications in sensors, catalysis, drug delivery, antibodies, and receptors. In this context, many advanced methods of implementing functional MIP materials have been actively studied. Herein, we report a robust strategy to produce highly ordered arrays of surface-imprinted polymer patterns with unprecedented regularity for MIP-based sensor platform, which involves the controlled evaporative self-assembly process of MIP precursor solution in a confined geometry consisting of a spherical lens on a flat Si substrate (i.e., sphere-on-flat geometry) to synergistically utilize the "coffee-ring" effect and repetitive stick-slip motions of the three-phase contact line simply by solvent evaporation. Highly ordered arrays of the ring-patterned MIP films are then polymerized under UV irradiation to achieve semi-interpenetrating polymer networks. The extraction of templated target molecules from the surface-imprinted ring-patterned MIP films leaves behind copious cavities for the recognizable specific "memory sites" to efficiently detect small molecules. As a result, the elaborated surface structuring effect, sensitivity, and specific selectivity of the coffee-ring-based MIP sensors are scrutinized by capitalizing on an endocrine-disrupting chemical, 2,4-dichlorophenoxyacetic acid (2,4-D), as an example. Clearly, the evaporative self-assembly of nonvolatile solutes in a confined geometry renders the creation of familiar yet ordered coffee-ring-like patterns for a wide range of applications, including sensors, scaffolds for cell motility, templates, substrates for neuron guidance, etc., thereby dispensing with the need of multistep lithography techniques and external fields.


Assuntos
Disruptores Endócrinos , Impressão Molecular , Café , Polimerização , Polímeros
8.
Polymers (Basel) ; 12(9)2020 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-32842670

RESUMO

This study successfully fabricated BPA-imprinted poly(4-vinylpyridine-co-ethylene glycol dimethacrylate) (poly(4-VP-co-EGDMA)) quartz crystal microbalance (MIP-QCM) sensors on a silica skeleton surface and gold pinholes of silica inverse opal through surface-initiated atom transfer radical polymerization (SI-ATRP). The sensing features of the two MIP films on the structured silica surface and nano-scale local gold surface were investigated by measuring the resonant frequency change (∆f) in QCM sensors. The ∆f values for the p-MIP (MIP on gold pinholes) and s-MIP films (MIP on silica skeleton surface) were obtained with the ∆f value of -199 ± 4.9 Hz and -376 ± 19.1 Hz, respectively, whereas for p-/s-NIP films, the ∆f values were observed to be -115 ± 19.2 Hz and -174 ± 5.8 Hz by the influence of non-specific adsorption on the surface of the films. Additionally, the imprinting factor (IF) appeared to be 1.72 for p-MIP film and 2.15 for s-MIP film, and the limits of quantitation (LOQ) and detection (LOD) were 54.924 and 18.125 nM (p-MIP film) and 38.419 and 12.678 nM (s-MIP film), respectively. Using the Freundlich isotherm model, the binding affinity of the BPA-imprinted films was evaluated. This was measured in an aqueous solution of BPA whose concentration ranged between 45 and 225 nM. It was found that the p-MIP film (m = 0.39) was relatively more heterogeneous than the s-MIP film (m = 0.33), both of which were obtained from the slope of the linear regressions. Finally, the selectivity of the MIP-QCM sensors for BPA detection was determined by measuring the effect of other analogous chemicals, such as bisphenol F (BPF), bisphenol AP (BPAP), and bisphenol B (BPB), in aqueous solutions. The selectivity coefficients (k*) of the two MIP films had ~1.9 for the p-MIP and ~2.3 for the s-MIP films, respectively. The results reveal that, with respect to signal amplification of the QCM sensors, the s-MIP film has better sensing features and faster detection responses than the p-MIP film.

9.
Polymers (Basel) ; 11(8)2019 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-31405248

RESUMO

Surface imprinting is an effective and simple method to fabricate and retain imprinted templates and recognizable nanocavities after template extraction. The imprinted effects can be controlled depending on the surface morphological changes. In general, a planar film has a limited area compared to a structured film with relatively higher surface-to-volume (S/V) ratio (A/A0), leading to the conventional sensing response upon the functionality of monomers in a fixed chemical composition. To increase the limited sensing properties and develop simple fabrication of porous arrays on a large area, we herein demonstrate the 2,4-dichlorophenoxyacetic acid (2,4-D, herbicide)-imprinted porous thin film lithographically patterned using photopolymerization and silica colloidal array as a master mold, derived by a unidirectional rubbing method. The resonant frequency changes with respect to the adsorption of 2,4-D molecules on a template-extracted porous poly(MAA-co-EGDMA) (MIP) film in a 10-1 mM aqueous solution of 2,4-D for 1 h, and when compared to the planar MIP film, the higher sensing response (Δf = -283 ± 7 Hz ≈ 1543 ± 38 ng/cm2) appears on the porous MIP film due to the specific recognition toward the more accessible templated cavities of the structured porous array, indicating an imprinting effect (If) value of 3.5. In addition, a higher selectivity for 2,4-D was also displayed on the porous MIP film compared to other herbicides. From these results, it was revealed that these improved sensing properties can be determined from the effects of various parameters (template functionality, film structuring, hydroxyl groups of silica colloids, etc.).

10.
ACS Appl Mater Interfaces ; 8(11): 7381-9, 2016 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-26938141

RESUMO

In this work, the formation of various polystyrene (PS) colloidal structures on striped PS patterns is demonstrated based on a simple and novel convective assembly method that controls the electrostatic interactions between the PS colloidal particles and sodium dodecyl sulfate (SDS). Under the optimal conditions (different withdrawal speeds, channel dimensions, suspension concentrations, etc.), highly ordered structures such as highly close-packed, zigzag, and linear colloidal aggregates are observed. In addition, these colloidal arrangements are used for development of molecularly imprinted polymer (MIP) sensors with highly improved sensing properties. Using PDMS replicas, three hemispherical poly(methacrylic acid-ethylene glycol dimethacrylate) (poly(MAA-EGDMA)) MIP films, including planar MIP and non-imprinted polymer (NIP) films, are photopolymerized for detection of trace atrazine in an aqueous solution. From gravimetric quartz crystal microbalance (QCM) measurements, a non-close-packed MIP film exhibits highest sensing response (Δf = 932 Hz) to atrazine detection among hemispherical MIP films and shows 6.5-fold higher sensing response than the planar MIP film. In addition, the sensitivity of the MIP sensor is equivalent to -119 Hz/(mol L(-1)). From the ratio of slopes of the calibration curves for the hemispherical MIP and NIP films, the imprinting factor (If) is as high as 11.0. The hemispherical MIP film also shows excellent selectivity in comparison with the sensing responses of other analogous herbicides. As a result, this molecular surface imprinting using PS colloidal arrays is highly efficient for herbicide detection.

11.
J Adv Prosthodont ; 7(5): 386-91, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26576255

RESUMO

PURPOSE: The purpose of this preliminary study was to investigate the effects of adding 4,4'-bis(N,N-diethylamino) benzophenone (DEABP) as a co-initiator to a binary photoinitiating system (camphorquinone-amine) to analyze on the degree of conversion (DC) of a light-cured resin for dental 3D printing. MATERIALS AND METHODS: Cylindrical specimens (N=60, n=30 per group, ø5 mm × 1 mm) were fabricated using bisphenol A glycerolate dimethacrylate (BisGMA) both with and without DEABP. The freshly mixed resins were exposed to light in a custom-made closed chamber with nine light-emitting diode lamps (wavelength: 405 nm; power: 840 mW/cm(2)) for polymerization at each incidence of light-irradiation at 10, 30, 60, 180, and 300 seconds, while five specimens at a time were evaluated at each given irradiation point. Fourier-transform infrared (FTIR) spectroscopy was used to measure the DC values of the resins. Two-way analysis of variance and the Duncan post hoc test were used to analyze statistically significant differences between the groups and given times (α=.05). RESULTS: In the DEABP-containing resin, the DC values were significantly higher at all points in time (P<.001), and also the initial polymerization velocity was faster than in the DEABP-free resin. CONCLUSION: The addition of DEABP significantly enhanced the DC values and, thus, could potentially become an efficient photoinitiator when combined with a camphorquinone-amine system and may be utilized as a more advanced photopolymerization system for dental 3D printing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...