Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Funct ; 12(8): 3562-3571, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33900303

RESUMO

Luteolin attenuates myocardial ischemia/reperfusion (I/R) injury in diabetes through activating the nuclear factor erythroid 2-related factor 2 (Nrf2)-related antioxidative response. Though sestrin2, a highly conserved stress-inducible protein, is regarded as a modulator of Nrf2 and reduces I/R injury, the effect of sestrin2 on luteolin-induced prevention of the diabetic heart from I/R injury remains unclear. We hypothesized that luteolin could relieve myocardial I/R injury in diabetes by activating the sestrin2-modulated Nrf2 antioxidative response. Diabetes was induced in rats using a single dose of streptozotocin (65 mg kg-1, i.p.) for 6 weeks, and then luteolin (100 mg kg-1 d-1, i.g.), Nrf2 inhibitor brusatol, or sestrin2 blocker leucine was administered for 2 consecutive weeks. After that, the hearts were isolated and exposed to global I/R (30 min/120 min). Luteolin markedly improved cardiac function, myocardial viability and expressions of Nrf2-regulated antioxidative genes, and reduced lactate dehydrogenase release, malondialdehyde, and 8-hydroxydeoxyguanosine in the diabetic I/R hearts. Ca2+-induced mitochondrial permeability transition and membrane potential disruption were markedly inhibited in luteolin-treated diabetic ventricular myocytes. All these effects of luteolin were significantly reversed by Nrf2 inhibitor brusatol or sestrin2 inhibitor leucine. Luteolin-induced diminished Keap1 and augmented nuclear translocation and ARE binding activity of Nrf2 were hampered by leucine in the diabetic I/R heart. In addition, luteolin-induced augmented transcription of sestrin2 was markedly blocked by brusatol in the diabetic I/R heart. These data suggest that sestrin2 and Nrf2 positively interact to promote antioxidative actions and attenuate mitochondrial damage, by which luteolin relieves diabetic myocardial I/R injury.


Assuntos
Cardiotônicos/farmacologia , Luteolina/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Ratos , Ratos Sprague-Dawley , Sestrinas/metabolismo , Estreptozocina
2.
Oxid Med Cell Longev ; 2019: 2719252, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31089405

RESUMO

Luteolin has been reported to attenuate ischemia/reperfusion (I/R) injury in the diabetic heart through endothelial nitric oxide synthase- (eNOS-) related antioxidative response. Though the nuclear factor erythroid 2-related factor 2 (Nrf2) is regarded as a key endogenous factor to reduce diabetic oxidative stress, whether luteolin reduces cardiac I/R injury in the diabetic heart via enhancing Nrf2 function needs to be clarified. We hypothesized that pretreatment with luteolin could alleviate cardiac I/R injury in the diabetic heart by affecting the eNOS/Nrf2 signaling pathway. The diabetic rat was produced by a single injection of streptozotocin (65 mg/kg, i.p.) for 6 weeks, and then, luteolin (100 mg/kg/day, i.g.), eNOS inhibitor L-NAME, or Nrf2 inhibitor brusatol was administered for the succedent 2 weeks. After that, the isolated rat heart was exposed to 30 min of global ischemia and 120 min of reperfusion to establish I/R injury. Luteolin markedly ameliorated cardiac function and myocardial viability; upregulated expressions of heme oxygenase-1, superoxide dismutase, glutathione peroxidase, and catalase; and reduced myocardial lactate dehydrogenase release, malondialdehyde, and 8-hydroxydeoxyguanosine in the diabetic I/R heart. All these ameliorating effects of luteolin were significantly reversed by L-NAME or brusatol. Luteolin also markedly reduced S-nitrosylation of Kelch-like ECH-associated protein 1 (Keap1) and upregulated Nrf2 and its transcriptional activity. This effect of luteolin on Keap1/Nrf2 signaling was attenuated by L-NAME. These data reveal that luteolin protects the diabetic heart against I/R injury by enhancing eNOS-mediated S-nitrosylation of Keap1, with subsequent upregulation of Nrf2 and the Nrf2-related antioxidative signaling pathway.


Assuntos
Antioxidantes/metabolismo , Diabetes Mellitus Experimental/complicações , Luteolina/uso terapêutico , Traumatismo por Reperfusão Miocárdica/complicações , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Animais , Glicemia/metabolismo , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Diabetes Mellitus Experimental/sangue , Hemodinâmica/efeitos dos fármacos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , L-Lactato Desidrogenase/metabolismo , Luteolina/farmacologia , Masculino , Malondialdeído/metabolismo , Traumatismo por Reperfusão Miocárdica/sangue , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Nitrosação , Ratos Sprague-Dawley , Sobrevivência de Tecidos/efeitos dos fármacos , Função Ventricular/efeitos dos fármacos
3.
Naunyn Schmiedebergs Arch Pharmacol ; 391(7): 719-728, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29671020

RESUMO

Myocardial ischemia/reperfusion (I/R) injury in hypercholesterolemia is associated with oxidative stress, while luteolin is known to reduce oxidative stress by activating Akt/nuclear factor erythroid-2-related factor 2 (Nrf2) signaling and alleviate cardiac I/R injury. Here, we investigated whether luteolin pretreatment diminishes myocardial I/R injury in hypercholesterolemic rats by activating Akt/Nrf2 signaling. Hypercholesterolemic rats were produced by 2% cholesterol diet for 8 weeks. Luteolin (100 mg/kg/day, i.g.) or LY294002 was administered for the last 2 weeks. The hearts were then isolated and subjected to 30 min of global ischemia followed by 120 min of reperfusion. Pretreatment with luteolin significantly improved left ventricular function throughout reperfusion, increased cardiac tissue viability, reduced coronary lactate dehydrogenase release and the myocardial malondialdehyde level, upregulated p-Akt and p-GSK3ß expressions, inhibited nuclear translocation of Fyn, and activated Nrf2 function in hypercholesterolemic I/R rat hearts. All these improving effects of luteolin were significantly attenuated by LY294002. Ca2+-induced mitochondrial permeability transition pore (mPTP) opening and mitochondrial inner membrane potential reduction were significantly inhibited in ventricular myocytes isolated from luteolin-treated hypercholesterolemic rats, which were attenuated by LY294002. These results indicate that luteolin protects the hypercholesterolemic heart against I/R injury due to upregulation of Akt-mediated Nrf2 antioxidative function and inhibition of mPTP.


Assuntos
Cardiotônicos/farmacologia , Hipercolesterolemia/metabolismo , Luteolina/farmacologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cardiotônicos/uso terapêutico , Hipercolesterolemia/tratamento farmacológico , Luteolina/uso terapêutico , Masculino , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
4.
Sci Rep ; 7(1): 7995, 2017 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-28801583

RESUMO

The broad clinical acceptance of intraoperative blood salvage and its applications in cancer surgery remain controversial. Until now, a method that can safely eliminate cancer cells while preserving erythrocytes does not exist. Here, we investigated whether X-ray generated from linear accelerator irradiation at a certain dose can kill hepatocarcinoma cells while preserving erythrocytes. HepG2, SK-Hep1 or Huh7 cells were mixed into the aliquots of erythrocytes obtained from healthy volunteers. After the mixed cells were exposed to 30 Gy and 50 Gy X-rays irradiation, the viability, clonogenicity, DNA synthesis and tumorigenicity of the tumor cells were determined by the MTT assay, plate colony formation, 5-ethynyl-2'-deoxyuridine incorporation, and subcutaneous xenograft implantation into immunocompromised mice. The ATP, 2,3-DPG, free Hb, osmotic fragility, blood gas variables in erythrocytes and morphology of erythrocytes at 0 h, 12 h, 24 h, 48 h, 72 h after irradiation were analyzed. X-ray irradiation at 30 Gy effectively inhibited the viability, proliferation, and tumorigenicity of HepG2, SK-Hep1 and Huh7 cells without noticeably damaging the ability of oxygen-carrying, membrane integrity and morphology of erythrocytes. Theses results suggest that X-ray at 30 Gy irradiation might be safe to eliminate hepatocarcinoma cells while preserving erythrocytes in salvaged blood.


Assuntos
Carcinogênese/efeitos da radiação , Carcinoma Hepatocelular/patologia , Eritrócitos/efeitos da radiação , Neoplasias Hepáticas/patologia , Raios X , Adulto , Animais , Carcinoma Hepatocelular/metabolismo , Membrana Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Respiração Celular/efeitos da radiação , Células Cultivadas , Eritrócitos/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus
5.
PLoS One ; 10(5): e0127181, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26018651

RESUMO

An understanding of how to safely apply intraoperative blood salvage (IBS) in cancer surgery has not yet been obtained. Here, we investigated the optimal dose of 137Cs gamma-ray irradiation for killing human hepatocarcinoma (HepG2), gastrocarcinoma (SGC7901), and colonic carcinoma (SW620) tumor cells while preserving co-cultured erythrocytes obtained from 14 healthy adult volunteers. HepG2, SGC7901, or SW620 cells were mixed into the aliquots of erythrocytes. After the mixed cells were treated with 137Cs gamma-ray irradiation (30, 50, and 100 Gy), tumor cells and erythrocytes were separated by density gradient centrifugation in Percoll with a density of 1.063 g/ml. The viability, clonogenicity, DNA synthesis, tumorigenicity, and apoptosis of the tumor cells were determined by MTT assay, plate colony formation, 5-ethynyl-2'-deoxyuridine (EdU) incorporation, subcutaneous xenograft implantation into immunocompromised mice, and annexin V/7-AAD staining, respectively. The ATP concentration, 2,3-DPG level, free Hb concentration, osmotic fragility, membrane phosphatidylserine externalization, blood gas variables, reactive oxygen species levels, and superoxide dismutase levels in erythrocytes were analyzed. We found that 137Cs gamma-ray irradiation at 50 Gy effectively inhibited the viability, proliferation, and tumorigenicity of HepG2, SGC7901, and SW620 cells without markedly damaging the oxygen-carrying ability or membrane integrity or increasing the oxidative stress of erythrocytes in vitro. These results demonstrated that 50 Gy irradiation in a standard 137Cs blood irradiator might be a safe and effective method of inactivating HepG2, SGC7901, and SW620 cells mixed with erythrocytes, which might help to safely allow IBS in cancer surgery.


Assuntos
Eritrócitos/citologia , Eritrócitos/efeitos da radiação , Recuperação de Sangue Operatório/efeitos adversos , Segurança , Adulto , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos da radiação , Transformação Celular Neoplásica , Radioisótopos de Césio/efeitos adversos , Radioisótopos de Césio/uso terapêutico , Técnicas de Cocultura , Eritrócitos/metabolismo , Raios gama/efeitos adversos , Raios gama/uso terapêutico , Humanos , Hospedeiro Imunocomprometido/efeitos da radiação , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
6.
J Zhejiang Univ Sci B ; 16(5): 395-403, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25990057

RESUMO

The safe use of intraoperative blood salvage (IBS) in cancer surgery remains controversial. Here, we investigated the killing effect of cisplatin combined with hyperthermia on human hepatocarcinoma (HepG2) cells and erythrocytes from IBS in vitro. HepG2 cells were mixed with concentrated erythrocytes and pretreated with cisplatin (50, 100, and 200 µg/ml) alone at 37 °C for 60 min and cisplatin (25, 50, 100, and 200 µg/ml) combined with hyperthermia at 42 °C for 60 min. After pretreatment, the cell viability, colony formation and DNA metabolism in HepG2 and the Na(+)-K(+)-ATPase activity, 2,3-diphosphoglycerate (2,3-DPG) concentration, free hemoglobin (Hb) level, osmotic fragility, membrane phosphatidylserine externalization, and blood gas variables in erythrocytes were determined. Pretreatment with cisplatin (50, 100, and 200 µg/ml) combined with hyperthermia (42 °C) for 60 min significantly decreased HepG2 cell viability, and completely inhibited colony formation and DNA metabolism when the HepG2 cell concentration was 5×10(4) ml(-1) in the erythrocyte (P<0.01). Erythrocytic Na(+)-K(+)-ATPase activity, 2,3-DPG level, phosphatidylserine externalization, and extra-erythrocytic free Hb were significantly altered by hyperthermia plus high concentrations of cisplatin (100 and 200 µg/ml) (P<0.05), but not by hyperthermia plus 50 µg/ml cisplatin (P>0.05). In conclusion, pretreatment with cisplatin (50 µg/ml) combined with hyperthermia (42 °C) for 60 min effectively eliminated HepG2 cells from IBS but did not significantly affect erythrocytes in vitro.


Assuntos
Antineoplásicos/uso terapêutico , Cisplatino/uso terapêutico , Eritrócitos/efeitos dos fármacos , Recuperação de Sangue Operatório , 2,3-Difosfoglicerato/química , Adulto , Idoso , Sobrevivência Celular , Terapia Combinada , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Hemoglobinas/química , Células Hep G2 , Humanos , Hipertermia Induzida , Masculino , Pessoa de Meia-Idade , Osmose , Fosfatidilserinas/química , Fosfolipídeos/química , ATPase Trocadora de Sódio-Potássio/química
7.
J Cardiovasc Pharmacol ; 65(4): 349-56, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25502309

RESUMO

Myocardial ischemia/reperfusion (I/R) injury in diabetes is associated with oxidative stress, endothelial nitric oxide synthase (eNOS) dysfunction, and mitochondrial collapse, whereas luteolin is known to protect the cardiovascular system against diabetes and I/R injury. Here, we investigated whether luteolin pretreatment diminishes myocardial I/R injury in diabetic rats by affecting eNOS and the mitochondrial permeability transition pore (mPTP). After diabetic rats were produced by streptozotocin treatment (65 mg/kg) for 3 weeks, luteolin (100 mg·kg·d) or L-NAME (25 mg·kg·d) was administered intragastrically for 2 weeks. Hearts were then isolated and subjected to 30 minutes of global ischemia followed by 120 minutes of reperfusion. Pretreatment with luteolin significantly improved left ventricular function and coronary flow throughout reperfusion, increased cardiac tissue viability and manganese superoxide dismutase (MnSOD) activity, and reduced coronary lactate dehydrogenase release, and the myocardial malonaldehyde level in diabetic I/R rat hearts. All these improving effects of luteolin were significantly attenuated by L-NAME. Luteolin also significantly upregulated eNOS expression in diabetic rat hearts after I/R. Ca-induced mPTP opening and mitochondrial inner membrane potential reduction were significantly inhibited in ventricular myocytes isolated from luteolin-treated diabetic rats, and this effect was attenuated by L-NAME. These findings indicate that luteolin protects the diabetic heart against I/R injury by upregulating the myocardial eNOS pathway, and downstream effects include the enhancement of MnSOD and inhibition of mPTP.


Assuntos
Membranas Intracelulares , Luteolina/farmacologia , Mitocôndrias Cardíacas/metabolismo , Traumatismo por Reperfusão Miocárdica , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Animais , Cardiotônicos/farmacologia , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Permeabilidade , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA