Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Regen Res ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39104167

RESUMO

Recombinant tissue plasminogen activator is commonly used for hematoma evacuation in minimally invasive surgery following intracerebral hemorrhage. However, during minimally invasive surgery, recombinant tissue plasminogen activator may come into contact with brain tissue. Therefore, a thorough assessment of its safety is required. In this study, we established a mouse model of intracerebral hemorrhage induced by type VII collagenase. We observed that the administration of recombinant tissue plasminogen activator without hematoma aspiration significantly improved the neurological function of mice with intracerebral hemorrhage, reduced pathological damage, and lowered the levels of apoptosis and autophagy in the tissue surrounding the hematoma. In an in vitro model of intracerebral hemorrhage using primary cortical neurons induced by hemin, the administration of recombinant tissue plasminogen activator suppressed neuronal apoptosis, autophagy, and endoplasmic reticulum stress. Transcriptome sequencing analysis revealed that recombinant tissue plasminogen activator upregulated the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway in neurons. Moreover, the phosphoinositide 3-kinase inhibitor LY294002 abrogated the neuroprotective effects of recombinant tissue plasminogen activator in inhibiting excessive apoptosis, autophagy, and endoplasmic reticulum stress. Furthermore, to specify the domain of recombinant tissue plasminogen activator responsible for its neuroprotective effects, various inhibitors were used to target distinct domains. It has been revealed that the epidermal growth factor receptor inhibitor AG-1478 reversed the effect of recombinant tissue plasminogen activator on the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway. These findings suggest that recombinant tissue plasminogen activator exerts a direct neuroprotective effect on neurons following intracerebral hemorrhage, possibly through activation of the phosphoinositide 3-kinase/RAC-alpha serine/threonine-protein kinase/mammalian target of rapamycin pathway.

2.
Eur J Med Res ; 29(1): 252, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659079

RESUMO

The use of anticoagulants has become more frequent due to the progressive aging population and increased thromboembolic events. Consequently, the proportion of anticoagulant-associated intracerebral hemorrhage (AAICH) in stroke patients is gradually increasing. Compared with intracerebral hemorrhage (ICH) patients without coagulopathy, patients with AAICH may have larger hematomas, worse prognoses, and higher mortality. Given the need for anticoagulant reversal and resumption, the management of AAICH differs from that of conventional medical or surgical treatments for ICH, and it is more specific. Understanding the pharmacology of anticoagulants and identifying agents that can reverse their effects in the early stages are crucial for treating life-threatening AAICH. When patients transition beyond the acute phase and their vital signs stabilize, it is important to consider resuming anticoagulants at the right time to prevent the occurrence of further thromboembolism. However, the timing and strategy for reversing and resuming anticoagulants are still in a dilemma. Herein, we summarize the important clinical studies, reviews, and related guidelines published in the past few years that focus on the reversal and resumption of anticoagulants in AAICH patients to help implement decisive diagnosis and treatment strategies in the clinical setting.


Assuntos
Anticoagulantes , Hemorragia Cerebral , Humanos , Hemorragia Cerebral/tratamento farmacológico , Hemorragia Cerebral/induzido quimicamente , Anticoagulantes/efeitos adversos , Anticoagulantes/uso terapêutico , Tromboembolia/prevenção & controle , Tromboembolia/tratamento farmacológico
3.
Proc Natl Acad Sci U S A ; 121(6): e2318174121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289955

RESUMO

Atomically dispersed catalysts are a promising alternative to platinum group metal catalysts for catalyzing the oxygen reduction reaction (ORR), while limited durability during the electrocatalytic process severely restricts their practical application. Here, we report an atomically dispersed Co-doped carbon-nitrogen bilayer catalyst with unique dual-axial Co-C bonds (denoted as Co/DACN) by a smart phenyl-carbon-induced strategy, realizing highly efficient electrocatalytic ORR in both alkaline and acidic media. The corresponding half-wave potential for ORR is up to 0.85 and 0.77 V (vs. reversible hydrogen electrode (RHE)) in 0.5 M H2SO4 and 0.1 M KOH, respectively, representing the best ORR activity among all non-noble metal catalysts reported to date. Impressively, the Zn-air battery (ZAB) equipped with Co/DACN cathode achieves outstanding durability after 1,688 h operation at 10 mA cm-2 with a high current density (154.2 mA cm-2) and a peak power density (210.1 mW cm-2). Density functional theory calculations reveal that the unique dual-axial cross-linking Co-C bonds of Co/DACN significantly enhance the stability during ORR and also facilitate the 4e- ORR pathway by forming a joint electron pool due to the improved interlayer electron mobility. We believe that axial engineering opens a broad avenue to develop high-performance heterogeneous electrocatalysts for advanced energy conversion and storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA