Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37177105

RESUMO

Electron transport materials (ETMs) play a vital role in electron extraction and transport at the perovskite/ETM interface of inverted perovskite solar cells (PSCs) and are useful in power conversion efficiency (PCE), which is limited by interface carrier recombination. However, strategies for passivating undercoordinated Pb2+ at the perovskite/ETM interface employing ETMs remain a challenge. In this work, a variety of heteroatoms were used to strengthen the Lewis base property of new ETMs (asymmetrical perylene-diimide), aimed at deactivating non-bonded Pb2+ at the perovskite surface through Lewis acid-base coordination. Quantum chemical analysis revealed that novel ETMs have matched the energy level of perovskite, which enables electron extraction at the perovskite/ETM interface. The results also suggest that the large electron mobility (0.57~5.94 cm2 V-1 s-1) of designed ETMs shows excellent electron transporting ability. More importantly, reinforced interaction between new ETMs and Pb2+ was found, which is facilitating to passivation of the defects induced by unsaturated Pb2+ at the perovskite/ETM interface. Furthermore, it is found that MA (CH3NH3+), Pb, and IPb (iodine substituted on the Pb site) defects at the perovskite/ETM interface could be effectively deactivated by the new ETMs. This study provides a useful strategy to design ETMs for improving the interface property in PSCs.

2.
ChemMedChem ; 18(16): e202300131, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37226330

RESUMO

Efficacy of clinical chemotherapeutic agents depends not only on direct cytostatic and cytotoxic effects but also involves in eliciting (re)activation of tumour immune effects. One way to provoke long-lasting antitumour immunity is coined as immunogenic cell death (ICD), exploiting the host immune system against tumour cells as a "second hit". Although metal-based antitumour complexes hold promise as potential chemotherapeutic agents, ruthenium (Ru)-based ICD inducers remain sparse. Herein, we report a half-sandwich complex Ru(II) bearing aryl-bis(imino) acenaphthene chelating ligand with ICD inducing properties for melanoma in vitro and in vivo. Complex Ru(II) displays strong anti-proliferative potency and potential cell migration inhibition against melanoma cell lines. Importantly, complex Ru(II) drives the multiple biochemical hallmarks of ICD in melanoma cells, i. e., the elevated expression of calreticulin (CRT), high mobility group box 1 (HMGB1), Hsp70 and secretion of ATP, followed by the decreased expression of phosphorylation of Stat3. In vivo the inhibition of tumour growth in prophylactic tumour vaccination model further confirms that mice with complex Ru(II)-treated dying cells lead to activate adaptive immune responses and anti-tumour immunity by the activation of ICD in melanoma cells. Mechanisms of action studies show that complex Ru(II)-induced ICD could be associated with mitochondrial damage, ER stress and impairment of metabolic status in melanoma cells. We believe that the half-sandwich complex Ru(II) as an ICD inducer in this work will help to design new half-sandwich Ru-based organometallic complexes with immunomodulatory response in melanoma treatments.


Assuntos
Antineoplásicos , Complexos de Coordenação , Melanoma , Rutênio , Animais , Camundongos , Rutênio/farmacologia , Rutênio/química , Morte Celular Imunogênica , Antineoplásicos/farmacologia , Antineoplásicos/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/química , Melanoma/tratamento farmacológico , Linhagem Celular Tumoral
3.
Mol Ecol Resour ; 22(4): 1417-1426, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34826191

RESUMO

Polyploidy plays an important role in the evolution of eukaryotes, especially for flowering plants. Many of ecologically or agronomically important plant or crop species are polyploids, including sycamore maple (tetraploid), the world second and third largest food crops wheat (hexaploid) and potato (tetraploid) as well as economically important aquaculture animals such as Atlantic salmon and trout. The next generation sequencing data enables to allocate genotype at a sequence variant site, known as genotyping by sequencing (GBS). GBS has stimulated enormous interests in population based genomics studies in almost all diploid and many polyploid organisms. DNA sequence polymorphisms are codominant and thus fully informative about the underlying genotype at the polymorphic site, making GBS a straightforward task in diploids. However, sequence data may usually be uninformative in polyploid species, making GBS a far more challenging task in polyploids. This paper presents novel and rigorous statistical methods for predicting the number of sequence reads needed to ensure accurate GBS at a polymorphic site bared by the reads in polyploids and shows that a dozen of reads can ensure a probability of 95% to recover all constituent alleles of any tetraploid genotype but several hundreds of reads are needed to accurately uncover the genotype with probability confidence of 90%, subverting the proposition of GBS using low coverage sequence data in the literature. The theoretical prediction was tested by use of RAD-seq data from tetraploid potato cultivars. The paper provides polyploid experimentalists with theoretical guides and methods for designing and conducting their sequence-based studies.


Assuntos
Técnicas de Genotipagem , Sequenciamento de Nucleotídeos em Larga Escala , Plantas , Poliploidia , Alelos , Diploide , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas/genética
4.
Plants (Basel) ; 10(2)2021 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-33562246

RESUMO

The new sequencing technology enables identification of genome-wide sequence-based variants at a population level and a competitively low cost. The sequence variant-based molecular markers have motivated enormous interest in population and quantitative genetic analyses. Generation of the sequence data involves a sophisticated experimental process embedded with rich non-biological variation. Statistically, the sequencing process indeed involves sampling DNA fragments from an individual sequence. Adequate knowledge of sampling variation of the sequence data generation is one of the key statistical properties for any downstream analysis of the data and for implementing statistically appropriate methods. This paper reports a thorough investigation on modeling the sampling variation of the sequence data from the optimized RAD-seq (Restriction sit associated DNA sequencing) experiments with two parents and their offspring of diploid and autotetraploid potato (Solanum tuberosum L.). The analysis shows significant dispersion in sampling variation of the sequence data over that expected under multinomial distribution as widely assumed in the literature and provides statistical methods for modeling the variation and calculating the model parameters, which may be easily implemented in real sequence datasets. The optimized design of RAD-seq experiments enabled effective control of presentation of undesirable chloroplast DNA and RNA genes in the sequence data generated.

5.
New Phytol ; 230(1): 387-398, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-31913501

RESUMO

Dissecting the genetic architecture of quantitative traits in autotetraploid species is a methodologically challenging task, but a pivotally important goal for breeding globally important food crops, including potato and blueberry, and ornamental species such as rose. Mapping quantitative trait loci (QTLs) is now a routine practice in diploid species but is far less advanced in autotetraploids, largely due to a lack of analytical methods that account for the complexities of tetrasomic inheritance. We present a novel likelihood-based method for QTL mapping in outbred segregating populations of autotetraploid species. The method accounts properly for sophisticated features of gene segregation and recombination in an autotetraploid meiosis. It may model and analyse molecular marker data with or without allele dosage information, such as that from microarray or sequencing experiments. The method developed outperforms existing bivalent-based methods, which may fail to model and analyse the full spectrum of experimental data, in the statistical power of QTL detection, and accuracy of QTL location, as demonstrated by an intensive simulation study and analysis of data sets collected from a segregating population of potato (Solanum tuberosum). The study enables QTL mapping analysis to be conducted in autotetraploid species under a rigorous tetrasomic inheritance model.


Assuntos
Locos de Características Quantitativas , Solanum tuberosum , Mapeamento Cromossômico , Funções Verossimilhança , Modelos Genéticos , Melhoramento Vegetal , Solanum tuberosum/genética , Tetraploidia
6.
Mol Biol Evol ; 38(3): 777-787, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32898273

RESUMO

Genetic recombination characterized by reciprocal exchange of genes on paired homologous chromosomes is the most prominent event in meiosis of almost all sexually reproductive organisms. It contributes to genome stability by ensuring the balanced segregation of paired homologs in meiosis, and it is also the major driving factor in generating genetic variation for natural and artificial selection. Meiotic recombination is subjected to the control of a highly stringent and complex regulating process and meiotic recombination frequency (MRF) may be affected by biological and abiotic factors such as sex, gene density, nucleotide content, and chemical/temperature treatments, having motivated tremendous researches for artificially manipulating MRF. Whether genome polyploidization would lead to a significant change in MRF has attracted both historical and recent research interests; however, tackling this fundamental question is methodologically challenging due to the lack of appropriate methods for tetrasomic genetic analysis, thus has led to controversial conclusions in the literature. This article presents a comprehensive and rigorous survey of genome duplication-mediated change in MRF using Saccharomyces cerevisiae as a eukaryotic model. It demonstrates that genome duplication can lead to consistently significant increase in MRF and rate of crossovers across all 16 chromosomes of S. cerevisiae, including both cold and hot spots of MRF. This ploidy-driven change in MRF is associated with weakened recombination interference, enhanced double-strand break density, and loosened chromatin histone occupation. The study illuminates a significant evolutionary feature of genome duplication and opens an opportunity to accelerate response to artificial and natural selection through polyploidization.


Assuntos
Troca Genética , Modelos Genéticos , Ploidias , Saccharomyces cerevisiae/genética , Quebras de DNA de Cadeia Dupla , Duplicação Gênica , Meiose
7.
PLoS Genet ; 14(10): e1007691, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30273335

RESUMO

Post-mitotic cell separation is one of the most prominent events in the life cycle of eukaryotic cells, but the molecular underpinning of this fundamental biological process is far from being concluded and fully characterized. We use budding yeast Saccharomyces cerevisiae as a model and demonstrate AMN1 as a major gene underlying post-mitotic cell separation in a natural yeast strain, YL1C. Specifically, we define a novel 11-residue domain by which Amn1 binds to Ace2. Moreover, we demonstrate that Amn1 induces proteolysis of Ace2 through the ubiquitin proteasome system and in turn, down-regulates Ace2's downstream target genes involved in hydrolysis of the primary septum, thus leading to inhibition of cell separation and clumping of haploid yeast cells. Using ChIP assays and site-specific mutation experiments, we show that Ste12 and the a1-α12 heterodimer are two direct regulators of AMN1. Specifically, a1-α2, a diploid-specific heterodimer, prevents Ste12 from inactivating AMN1 through binding to its promoter. This demonstrates how the Amn1-governed cell separation is highly cell type dependent. Finally, we show that AMN1368D from YL1C is a dominant allele in most strains of S. cerevisiae and evolutionarily conserved in both genic structure and phenotypic effect in two closely related yeast species, K. lactis and C. glabrata.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/citologia , Alelos , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitose/fisiologia , Ligação Proteica , Proteólise , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/metabolismo , Ubiquitinação
8.
Fish Physiol Biochem ; 40(1): 93-104, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23817987

RESUMO

The solute carrier family 7A, member 7 gene encodes the light chain- y⁺L amino acid transporter-1 (y⁺LAT1) of the heterodimeric carrier responsible for cationic amino acid (CAA) transport across the basolateral membranes of epithelial cells in intestine and kidney. Rising attention has been given to y⁺LAT1 involved in CAA metabolic pathways and growth control. The molecular characterization and function analysis of y⁺LAT1 in grass carp (Ctenopharyngodon idellus) is currently unknown. In the present study, full-length cDNA (2,688 bp), which encodes y⁺LAT1 and contains a 5'-untranslated region (319 bp), an open reading frame (1,506 bp) and a 3'-untranslated region (863 bp), has been cloned from grass carp. Amino acid sequence of grass carp y⁺LAT1 contains 11 transmembrane domains and shows 95 %, 80 % and 75 % sequence similarity to zebra fish, amphibian and mammalian y⁺LAT1, respectively. The tissue distribution and expression regulation by fasting of y⁺LAT1 mRNA were analyzed using real-time PCR. Our results showed that y⁺LAT1 mRNA was highly expressed in midgut, foregut and spleen while weakly expressed in hindgut, kidney, gill, brain, heart, liver and muscle. Nutritional status significantly influenced y⁺LAT1 mRNA expression in fish tissues, such as down-regulation of y⁺LAT1 mRNA expression after fasting (14 days).


Assuntos
Sistema y+L de Transporte de Aminoácidos/metabolismo , Carpas/metabolismo , Proteínas de Peixes/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Sequência de Aminoácidos , Sistema y+L de Transporte de Aminoácidos/química , Sistema y+L de Transporte de Aminoácidos/genética , Animais , Sequência de Bases , Carpas/genética , Jejum/metabolismo , Proteínas de Peixes/química , Proteínas de Peixes/genética , Transportador 1 de Aminoácidos Neutros Grandes/química , Transportador 1 de Aminoácidos Neutros Grandes/genética , Dados de Sequência Molecular , Filogenia , Distribuição Aleatória , Reação em Cadeia da Polimerase em Tempo Real , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...