Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38003116

RESUMO

The COVID-19 pandemic is caused by the zoonotic SARS-CoV-2 virus. A wide range of animals that interact with humans have been investigated to identify potential infections. As the extent of infection became more apparent, extensive animal monitoring became necessary to assess their susceptibility. This study analyzed nasal swabs and blood samples collected from randomly selected Korean native cattle and Korean native black goats. The tests conducted included real-time qPCR to detect SARS-CoV-2 antigens, an ELISA to detect antibodies, and a plaque reduction neutralization test (PRNT) to determine the presence of neutralizing antibodies. Among the 1798 animals tested (consisting of 1174 Korean native cattle and 624 Korean native black goats), SARS-CoV-2 viral RNA was detected in one Korean native cattle and one Korean native black goat. ELISA testing revealed positive results for antibodies in 54 Korean native cattle (4.60%) and 16 Korean native black goats (2.56%), while PRNTs yielded positive results in 51 Korean native cattle (4.34%) and 14 Korean native black goats (2.24%). The presence of SARS-CoV-2 antigens and/or antibodies was identified in animals on farms where farmworkers were already infected. It is challenging to completely rule out the possibility of reverse zoonotic transmission from humans to livestock in Korea, although the transmission is not to the same extent as it is in highly susceptible animal species like minks, cats, and dogs. This is due to the limited geographical area and the dense, intensive farming practices implemented in these regions. In conclusion, continuous viral circulation between humans and animals is inevitable, necessitating ongoing animal monitoring to ensure public health and safety.

2.
PLoS One ; 18(11): e0294427, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38015931

RESUMO

Ultraviolet light (UV) acts as a powerful disinfectant and can prevent contamination of personal hygiene from various contaminated environments. The 222-nm wavelength of UV-C has a highly effective sterilization activity and is safer than 275-nm UV-C. We investigated the irradiation efficacy of 222-nm UV-C against contaminating bacteria and viruses in liquid and fabric environments. We conducted colony-forming unit assays to determine the number of viable cells and a 50% tissue culture infectious dose assay to evaluate the virus titration. A minimum dose of 27 mJ/cm2 of 222-nm UV-C was required for >95% germicidal activity for gram-negative and -positive bacteria. A 25.1 mJ/cm2 dose could ensure >95% virucidal activity against low-pathogenic avian influenza virus and severe acute respiratory syndrome coronavirus (SARS-CoV-2). In addition, this energy dose of 222-nm UV-C effectively inactivated SARS-CoV-2 variants, Delta and Omicron. These results provide valuable information on the disinfection efficiency of 222-nm UV-C in bacterial and virus-contaminated environments and can also develop into a powerful tool for individual hygiene.


Assuntos
COVID-19 , Doenças Transmissíveis , Vírus , Humanos , SARS-CoV-2 , Raios Ultravioleta , COVID-19/prevenção & controle , Vírus/efeitos da radiação , Bactérias/efeitos da radiação , Desinfecção/métodos
4.
Mol Ther ; 31(6): 1675-1687, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945774

RESUMO

CRISPR-Cas13-mediated viral genome targeting is a novel strategy for defending against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Here, we generated mRNA-encoded Cas13b targeting the open reading frame 1b (ORF1b) region to effectively degrade the RNA-dependent RNA polymerase gene. Of the 12 designed CRISPR RNAs (crRNAs), those targeting the pseudoknot site upstream of ORF1b were found to be the most effective in suppressing SARS-CoV-2 propagation. Pseudoknot-targeting Cas13b reduced expression of the spike protein and attenuated viral replication by 99%. It also inhibited the replication of multiple SARS-CoV-2 variants, exhibiting broad potency. We validated the therapeutic efficacy of this system in SARS-CoV-2-infected hACE2 transgenic mice, demonstrating that crRNA treatment significantly reduced viral titers. Our findings suggest that the pseudoknot region is a strategic site for targeted genomic degradation of SARS-CoV-2. Hence, pseudoknot-targeting Cas13b could be a breakthrough therapy for overcoming infections by SARS-CoV-2 or other RNA viruses.


Assuntos
COVID-19 , Animais , Camundongos , SARS-CoV-2/genética , Replicação Viral , RNA Viral/genética , RNA Viral/metabolismo
5.
Sci Rep ; 13(1): 3303, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849513

RESUMO

A highly contagious virus, severe acute respiratory syndrome coronavirus 2, caused the coronavirus disease 19 (COVID-19) pandemic (SARS-CoV-2). SARS-CoV-2 genetic variants have been reported to circulate throughout the COVID-19 pandemic. COVID-19 symptoms include respiratory symptoms, fever, muscle pain, and breathing difficulty. In addition, up to 30% of COVID-19 patients experience neurological complications such as headaches, nausea, stroke, and anosmia. However, the neurotropism of SARS-CoV-2 infection remains largely unknown. This study investigated the neurotropic patterns between the B1.617.2 (Delta) and Hu-1 variants (Wuhan, early strain) in K18-hACE2 mice. Despite both the variants inducing similar pathogenic patterns in various organs, B1.617.2-infected K18-hACE2 mice demonstrated a higher range of disease phenotypes such as weight loss, lethality, and conjunctivitis when compared to those in Hu-1-infected mice. In addition, histopathological analysis revealed that B1.617.2 infects the brain of K18-hACE2 mice more rapidly and effectively than Hu-1. Finally, we discovered that, in B1.617.2-infected mice, the early activation of various signature genes involved innate cytokines and that the necrosis-related response was most pronounced than that in Hu-1-infected mice. The present findings indicate the neuroinvasive properties of SARS-CoV-2 variants in K18-hACE2 mice and link them to fatal neuro-dissemination during the disease onset.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Pandemias
6.
Mar Drugs ; 20(5)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35621947

RESUMO

Crude polysaccharides, extracted from two seaweed species (Hizikia fusiforme and Sargassum horneri) and Haliotis discus hannai (abalone) viscera, were evaluated for their inhibitory effect against SARS-CoV-2 propagation. Plaque titration revealed that these crude polysaccharides efficiently inhibited SARS-CoV-2 propagation with IC50 values ranging from 0.35 to 4.37 µg/mL. The crude polysaccharide of H. fusiforme showed the strongest antiviral effect, with IC50 of 0.35 µg/mL, followed by S. horneri and abalone viscera with IC50 of 0.56 and 4.37 µg/mL, respectively. In addition, immunofluorescence assay, western blot, and quantitative RT-PCR analysis verified that these polysaccharides could inhibit SARS-CoV-2 replication. In Vero E6 cells, treatment with these crude polysaccharides before or after viral infection strongly inhibited the expression level of SARS-CoV-2 spikes, nucleocapsid proteins, and RNA copies of RNA-dependent RNA-polymerase and nucleocapsid. These results show that these crude marine polysaccharides effectively inhibit SARS-CoV-2 propagation by interference with viral entry.


Assuntos
Tratamento Farmacológico da COVID-19 , Alga Marinha , Antivirais/farmacologia , Humanos , Polissacarídeos/farmacologia , RNA , SARS-CoV-2 , Vísceras
7.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120878

RESUMO

Dihydroflavonol 4-reductase (DFR) catalyzes a committed step in anthocyanin and proanthocyanidin biosynthesis by reducing dihydroflavonols to leucoanthocyanidins. However, the role of this enzyme in determining flower color in the economically important crop chrysanthemum (Chrysanthemum morifolium Ramat.) is unknown. Here, we isolated cDNAs encoding DFR from two chrysanthemum cultivars, the white-flowered chrysanthemum "OhBlang" (CmDFR-OB) and the red-flowered chrysanthemum "RedMarble" (CmDFR-RM) and identified variations in the C-terminus between the two sequences. An enzyme assay using recombinant proteins revealed that both enzymes catalyzed the reduction of dihydroflavonol substrates, but CmDFR-OB showed significantly reduced DFR activity for dihydrokaempferol (DHK) substrate as compared with CmDFR-RM. Transcript levels of anthocyanin biosynthetic genes were consistent with the anthocyanin contents at different flower developmental stages of both cultivars. The inplanta complementation assay, using Arabidopsis thaliana dfr mutant (tt3-1), revealed that CmDFR-RM, but not CmDFR-OB, transgenes restored defective anthocyanin biosynthesis of this mutant at the seedling stage, as well as proanthocyanidin biosynthesis in the seed. The difference in the flower color of two chrysanthemums can be explained by the C-terminal variation of CmDFR combined with the loss of CmF3H expression during flower development.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Antocianinas/biossíntese , Chrysanthemum/crescimento & desenvolvimento , Sequência de Bases , Chrysanthemum/classificação , Chrysanthemum/metabolismo , Clonagem Molecular , Flavonoides/metabolismo , Flores/classificação , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Variação Genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033022

RESUMO

The onion (Allium cepa L.) flavonol synthase (AcFLS-HRB) gene, encoding an enzyme responsible for flavonol biosynthesis in yellow onion, was recently identified and enzymatically characterized. Here, we performed an in vivo feeding assay involving bacterial expression of AcFLS-HRB and observed that it exhibited both flavanone 3-hydroxylase (F3H) and FLS activity. Transgenic tobacco (Nicotiana tabacum) expressing AcFLS-HRB produced lighter-pink flowers compared to wild-type plants. In transgenic petals, AcFLS-HRB was highly expressed at the mRNA and protein levels, and most AcFLS-HRB protein accumulated in the insoluble microsomal fractions. High-performance liquid chromatography (HPLC) analysis showed that flavonol levels increased but anthocyanin levels decreased in transgenic petals, indicating that AcFLS-HRB is a functional gene in planta. Gene expression analysis showed the reduced transcript levels of general phenylpropanoid biosynthetic genes and flavonoid biosynthetic genes in AcFLS-HRB overexpressed tobacco petals. Additionally, transgenic tobacco plants at the seedling stages showed increased primary root and root hair length and enhanced quercetin signals in roots. Exogenous supplementation with quercetin 3-O-rutinoside (rutin) led to the same phenotypic changes in root growth, suggesting that rutin is the causal compound that promotes root growth in tobacco. Therefore, augmenting flavonol levels affects both flower color and root growth in tobacco.


Assuntos
Antocianinas/metabolismo , Flavonóis/metabolismo , Flores/metabolismo , Cebolas/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Antocianinas/análise , Flavonóis/análise , Flores/genética , Regulação da Expressão Gênica de Plantas , Glucosídeos/farmacologia , Oxigenases de Função Mista/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Propanóis/metabolismo , Quercetina/análogos & derivados , Quercetina/farmacologia , Nicotiana/genética , Nicotiana/metabolismo
9.
J Biol Chem ; 289(32): 21926-36, 2014 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-24917672

RESUMO

Ninjurin1 is involved in the pathogenesis of experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, by mediating leukocyte extravasation, a process that depends on homotypic binding. However, the precise regulatory mechanisms of Ninjurin1 during inflammation are largely undefined. We therefore examined the pro-migratory function of Ninjurin1 and its regulatory mechanisms in macrophages. Interestingly, Ninjurin1-deficient bone marrow-derived macrophages exhibited reduced membrane protrusion formation and dynamics, resulting in the impairment of cell motility. Furthermore, exogenous Ninjurin1 was distributed at the membrane of filopodial structures in Raw264.7 macrophage cells. In Raw264.7 cells, RNA interference of Ninjurin1 reduced the number of filopodial projections, whereas overexpression of Ninjurin1 facilitated their formation and thus promoted cell motility. Ninjurin1-induced filopodial protrusion formation required the activation of Rac1. In Raw264.7 cells penetrating an MBEC4 endothelial cell monolayer, Ninjurin1 was localized to the membrane of protrusions and promoted their formation, suggesting that Ninjurin1-induced protrusive activity contributed to transendothelial migration. Taking these data together, we conclude that Ninjurin1 enhances macrophage motility and consequent extravasation of immune cells through the regulation of protrusive membrane dynamics. We expect these findings to provide insight into the understanding of immune responses mediated by Ninjurin1.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Movimento Celular/fisiologia , Macrófagos/fisiologia , Fatores de Crescimento Neural/fisiologia , Animais , Adesão Celular/fisiologia , Moléculas de Adesão Celular Neuronais/deficiência , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Membrana Celular/fisiologia , Células Cultivadas , Células Endoteliais/fisiologia , Técnicas de Silenciamento de Genes , Inflamação/etiologia , Inflamação/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fatores de Crescimento Neural/deficiência , Fatores de Crescimento Neural/genética , Neuropeptídeos/metabolismo , Pseudópodes/fisiologia , Interferência de RNA , Proteínas rac1 de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...