Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Adv Healthc Mater ; 13(7): e2302615, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117037

RESUMO

Hypoxia is a key hallmark of solid tumors and can cause resistance to various treatments such as photodynamics and immunotherapy. Microenvironment-responsive gene editing provides a powerful tool to overcome hypoxia resistance and remodel hypoxic microenvironments for enhanced tumor therapy. Here, a light-enhanced hypoxia-responsive multifunctional nanocarrier is developed to perform spatiotemporal specific dual gene editing for enhanced photodynamic and immunotherapy in breast cancer. As a gated molecule of nanocarrier, the degradation of azobenzene moieties under hypoxic conditions triggers controllable release of Cas9 ribonucleoprotein in hypoxic site of the tumor. Hyaluronic acid is conjugated with chloramine e6 to coat mesoporous silica nanoparticles for targeted delivery in tumors and generation of high levels of reactive oxygen species, which can result in increased hypoxia levels for effective cleavage of azobenzene bonds to improve gene editing efficiency and reduce toxic side effects with light irradiation. Moreover, dual targeting HIF-1α and PD-L1 in the anoxic microenvironments can overcome hypoxia resistance and remodel immune microenvironments, which reduces tumor plasticity and resistance to photodynamic and immunotherapy. In summary, a light-enhanced hypoxia responsive nanocomposite is developed for controllable gene editing which holds great promise for synergistic hypoxia-resistant photodynamic and immunotherapy.


Assuntos
Compostos Azo , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Edição de Genes , Neoplasias/tratamento farmacológico , Hipóxia/tratamento farmacológico , Nanopartículas/química , Imunoterapia , Linhagem Celular Tumoral , Fármacos Fotossensibilizantes/química , Microambiente Tumoral
3.
Angew Chem Int Ed Engl ; 62(37): e202306863, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37485554

RESUMO

CRISPR system-assisted immunotherapy is an attractive option in cancer therapy. However, its efficacy is still less than expected due to the limitations in delivering the CRISPR system to target cancer cells. Here, we report a new CRISPR/Cas9 tumor-targeting delivery strategy based on bioorthogonal reactions for dual-targeted cancer immunotherapy. First, selective in vivo metabolic labeling of cancer and activation of the cGAS-STING pathway was achieved simultaneously through tumor microenvironment (TME)-biodegradable hollow manganese dioxide (H-MnO2 ) nano-platform. Subsequently, CRISPR/Cas9 system-loaded liposome was accumulated within the modified tumor tissue through in vivo click chemistry, resulting in the loss of protein tyrosine phosphatase N2 (PTPN2) and further sensitizing tumors to immunotherapy. Overall, our strategy provides a modular platform for precise gene editing in vivo and exhibits potent antitumor response by boosting innate and adaptive antitumor immunity.


Assuntos
Sistemas CRISPR-Cas , Neoplasias , Humanos , Compostos de Manganês , Óxidos , Neoplasias/terapia , Imunoterapia , Edição de Genes/métodos , Microambiente Tumoral/genética
4.
Inflamm Res ; 72(6): 1147-1160, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37166466

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a progressive chronic interstitial lung disease with limited therapeutic options. Cuproptosis is a recently proposed novel form of programmed cell death, which has been strongly implicated in the development of various human diseases. However, the prognostic and therapeutic value of cuproptosis-related genes (CRGs) in IPF remains to be elucidated. METHODS: In the present study, weighted gene co-expression network analysis (WGCNA) was employed to identify the key CRGs associated with the development of IPF. The subsequent GSEA, immune cell correlation analysis, and single-cell RNA-Seq analysis were conducted to explore the potential role of the identified CRGs in IPF. In addition, ROC curves and survival analysis were used to assess the prognostic value of the key CRGs in IPF. Moreover, we explored the molecular mechanisms of participation of identified key CRGs in the development of pulmonary fibrogenesis through in vivo and in vitro experiments. RESULTS: The expression level of cyclin-dependent kinase inhibitor 2A (CDKN2A) is upregulated in the lung tissues of IPF patients and associated with disease severity. Notably, CDKN2A was constitutively expressed by fibrosis-promoting M2 macrophages. Decreased CDKN2A expression sensitizes M2 macrophages to elesclomol-induced cuproptosis in vitro. Inhibition of CDKN2A decreases the number of viable macrophages and attenuates bleomycin-induced pulmonary fibrosis in mice. CONCLUSION: These findings indicate that CDKN2A mediates the resistance of fibrosis-promoting M2 macrophages to cuproptosis and promotes pulmonary fibrosis in mice. Our work provides fresh insights into CRGs in IPF with potential value for research in the pathogenesis, diagnosis, and a new therapy strategy for IPF.


Assuntos
Fibrose Pulmonar Idiopática , Humanos , Animais , Camundongos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibrose Pulmonar Idiopática/genética , Apoptose , Bleomicina , Perfilação da Expressão Gênica , Inibidor p16 de Quinase Dependente de Ciclina
5.
Biomater Sci ; 11(9): 3016-3033, 2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-36897609

RESUMO

CRISPR, as an emerging gene-editing technology, has been widely used in multidisciplinary fields, including genetic diseases and some cancers. However, it remains a challenge to efficiently deliver CRISPR for safe and efficient genome editing. Currently, biomimetic materials have become an attractive delivery strategy for CRISPR-mediated genome editing due to their low immunogenicity and application safety. The biomimetic materials delivery is involved in the improvement of cellular uptake of nanoparticle vectors, and the gene editing efficiency. In this review, we summarize the current delivery strategies of CRISPR/Cas systems based on biogenic materials such as viruses, bacteria, cells, bioactive substances, etc., focusing on the potential applications in disease research and therapy. Finally, the prospects and limitations of CRISPR-based systems in therapeutics are discussed.


Assuntos
Técnicas de Transferência de Genes , Vírus , Sistemas CRISPR-Cas/genética , Edição de Genes , Terapia Genética
6.
ACS Appl Mater Interfaces ; 15(13): 16329-16342, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36946515

RESUMO

Multidrug resistance in cancer stem cells (CSCs) is a major barrier to chemotherapy; hence, developing CSC-specific targeted nanocarriers for efficient drug delivery is critical. In this study, monodisperse hollow-structured MnO2 (H-MnO2) with a mesoporous shell was created for efficient targeted drug delivery. An effective therapeutic compound isoliquiritigenin (ISL) was confirmed to inhibit the lung cancer stem-cell phenotype by natural compound screening based on integrated microfluidic devices. The resultant H-MnO2 showed a high drug-loading content of the potent CSC-targeting compound ISL and near-infrared fluorescent dye indocyanine green (ICG). In addition, H-MnO2 was successively modified with hyaluronic acid (HA) to enhance targeting CSCs with high CD44 expression levels. The H-MnO2@(ICG + ISL)@HA nanocomposites displayed promising chemotherapeutic and photothermal treatment capabilities, as well as NIR-triggered drug release, which showed excellent CSC-killing effects and tumor inhibition efficacy. Meanwhile, the development of the tumor was effectively restrained by NIR-triggered phototherapy and prominent chemotherapy without obvious side effects after tail vein injection of the nanocomposites in vivo. In summary, the prepared nanocomposites accomplished synergistic cancer therapy that targets CSCs, offering a versatile platform for lung cancer diagnosis and treatment.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Humanos , Compostos de Manganês , Microambiente Tumoral , Óxidos , Fototerapia , Sistemas de Liberação de Medicamentos , Verde de Indocianina , Células-Tronco Neoplásicas , Doxorrubicina/farmacologia , Linhagem Celular Tumoral
7.
Sci Adv ; 9(6): eade5393, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763655

RESUMO

Dysregulated endocrine hormones (EHs) contribute to tumorigenesis, but how EHs affect the tumor immune microenvironment (TIM) and the immunotherapy of non-small cell lung cancer (NSCLC) is still unclear. Here, endogenous ouabain (EO), an adrenergic hormone, is elevated in patients with NSCLC and closely related to tumor pathological stage, metastasis, and survival. EO promotes the suppression of TIM in vivo by modulating the expression of immune checkpoint proteins, in which programmed cell death protein ligand 1 (PD-L1) plays a major role. EO increases PD-L1 transcription; however, the EO receptor Na- and K-dependent adenosine triphosphatase (Na, K-ATPase) α1 interacts with PD-L1 to trigger the endocytic degradation of PD-L1. This seemingly contradictory result led us to discover the mechanism whereby EO cooperates with Na, K-ATPase α1 to finely control PD-L1 expression and dampen tumoral immunity. In conclusion, the Na, K-ATPase α1/EO signaling facilitates immune escape in lung cancer, and manipulation of this signaling shows great promise in improving immunotherapy for lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Antígeno B7-H1 , Neoplasias Pulmonares , ATPase Trocadora de Sódio-Potássio , Humanos , Adenosina Trifosfatases , Antígeno B7-H1/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Ligantes , Pulmão/metabolismo , Neoplasias Pulmonares/patologia , Microambiente Tumoral , ATPase Trocadora de Sódio-Potássio/metabolismo
8.
Opt Express ; 30(10): 17221-17229, 2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36221549

RESUMO

We have presented and demonstrated a customizable trajectory of a trapped particle in the Quadruple-beam optical trap. The orbital motion of the trapped microsphere was realized by modulating the trapping power. The motion trajectories could be designed by adjusting the modulation frequency, amplitude, and phase. By using this method, we have realized the triangle, bowknot, ellipse, straight line, and hooklike trajectories. The motion frequencies and circumferences were also modulated. The customizable trajectory in the optical trap may result in more possibilities for directional movement, microfluidic mixing, driven machines, and even painting freely.

9.
Micromachines (Basel) ; 13(10)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36296032

RESUMO

A cylindrical resonator gyroscope is a kind of Coriolis gyroscope, which measures angular velocity or angle via processing of the standing wave. The symmetry of a cylindrical resonator is destroyed by different degrees of geometric nonuniformity and structural damage in the machining process. The uneven mass distribution caused by the asymmetry of the resonator can be expressed in the form of a Fourier series. The first three harmonics will reduce the anti-interference ability of the resonator to the external vibration, as well as increase the angular random walk and zero-bias drift of the gyroscope. In this paper, the frequency split of different modes caused by the first three harmonic errors and the displacement of the center of the cylindrical resonator bottom plate are obtained by simulation, and the relationship between them is explored. The experimental results on five fused silica cylindrical resonators are consistent with the simulation, confirming the linear relationship between the n = 1 frequency split and second harmonic error. A method for evaluating the first three harmonic errors of fused silica cylindrical resonators is provided.

10.
Micromachines (Basel) ; 13(10)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296146

RESUMO

Axisymmetric resonators are key elements of Coriolis vibratory gyroscopes (CVGs). The performance of a CVG is closely related to the stiffness and damping symmetry of its resonator. The stiffness symmetry of a resonator can be effectively improved by electrostatic tuning or mechanical trimming, both of which need an accurate knowledge of the azimuth angles of the two stiffness axes of the resonator. Considering that the motion of a non-ideal axisymmetric resonator can be decomposed as two principal oscillations with two different natural frequencies along two orthogonal stiffness axes, this paper introduces a novel high-precision method of stiffness axes identification. The method is based on measurements of the phase difference between the signals detected at two orthogonal sensing electrodes when an axisymmetric resonator is released from all the control forces of the force-to-rebalance mode and from different initial pattern angles. Except for simplicity, our method works with the eight-electrodes configuration, in no need of additional electrodes or detectors. Furthermore, the method is insensitive to the variation of natural frequencies and operates properly in the cases of either large or small frequency splits. The introduced method is tested on a resonator gyroscope, and two stiffness axes azimuth angles are obtained with a resolution better than 0.1°. A comparison of the experimental results and theoretical model simulations confirmed the validity of our method.

11.
J Magn Reson ; 344: 107295, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36270057

RESUMO

Optically pumped nuclear magnetic resonance (NMR) gyroscope has been widely concerned as a future gyroscope with great development potential. In this study, the Rb-Xe coupling effect in this gyroscope between the alkali metal magnetometer and the noble gas NMR is investigated. The theoretical formulae about this effect are obtained based on Bloch equation and demonstrated by experiments. In order to see the influence of this effect on the gyro signal, the Xe NMR frequency changes with the carrier frequency and demodulation phase of the Rb magnetometer are studied with the deduced formulae. More importantly, theoretical analysis shows that this coupling effect can also significantly reduce the efficiency of the dual species scheme, which is used to suppress the influence of magnetic fluctuation. Therefore, to remove the Rb-Xe coupling effect, a simple and preliminary decoupling scheme operated by locking the phase difference to zero is proposed and demonstrated. All this work is of great significance to the improvement of the NMR gyro performance and future applications.

12.
Cell Discov ; 8(1): 16, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169121

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) continue to wreak havoc across the globe. Higher transmissibility and immunologic resistance of VOCs bring unprecedented challenges to epidemic extinguishment. Here we describe a monoclonal antibody, 2G1, that neutralizes all current VOCs and has surprising tolerance to mutations adjacent to or within its interaction epitope. Cryo-electron microscopy structure showed that 2G1 bound to the tip of receptor binding domain (RBD) of spike protein with small contact interface but strong hydrophobic effect, which resulted in nanomolar to sub-nanomolar affinities to spike proteins. The epitope of 2G1 on RBD partially overlaps with angiotensin converting enzyme 2 (ACE2) interface, which enables 2G1 to block interaction between RBD and ACE2. The narrow binding epitope but high affinity bestow outstanding therapeutic efficacy upon 2G1 that neutralized VOCs with sub-nanomolar half maximal inhibitory concentration in vitro. In SARS-CoV-2, Beta or Delta variant-challenged transgenic mice and rhesus macaque models, 2G1 protected animals from clinical illness and eliminated viral burden, without serious impact to animal safety. Mutagenesis experiments suggest that 2G1 is potentially capable of dealing with emerging SARS-CoV-2 variants in the future. This report characterized the therapeutic antibodies specific to the tip of spike against SARS-CoV-2 variants and highlights the potential clinical applications as well as for developing vaccine and cocktail therapy.

13.
Biomaterials ; 279: 121233, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34749073

RESUMO

Photothermal therapy (PTT) is a promising strategy for the treatment of advanced malignant neoplasm. However, the anti-tumor efficacy by PTT alone is insufficient to control tumor growth and metastasis. Here, we report a multifunctional nanotherapeutic system exerting a combined PTT and immunotherapy to synergistically enhance the therapeutic effect on melanoma. In particular, we selected the semiconductor nanomaterial copper sulfide (CuS), which served not only as a near-infrared (NIR) light-triggered photothermal converter for tumor hyperthermia but as a basic carrier to modify Cas9 ribonucleoprotein targeting PTPN2 on its surface. Efficient PTPN2 depletion was observed after the treatment of CuS-RNP@PEI nanoparticles, which caused the accumulation of intratumoral infiltrating CD8 T lymphocytes in tumor-bearing mice and upregulated the expression levels of IFN-ᵧ and TNF-α in tumor tissue, thus sensitizing tumors to immunotherapy. In addition, the effect worked synergistically with tumor ablation and immunogenic cell death (ICD) induced by PTT to amplify anti-tumor efficacy. Taken together, this exogenously controlled method provides a simple and effective treatment option for advanced malignant neoplasm.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Cobre , Imunoterapia , Camundongos , Neoplasias/terapia , Fototerapia , Proteína Tirosina Fosfatase não Receptora Tipo 2 , Ribonucleoproteínas , Sulfetos
14.
Opt Express ; 29(19): 29936-29945, 2021 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-34614727

RESUMO

The feedback control to optical tweezers is an obvious approach to improve the optical confinement. However, the electronic-based feedback controlling system in optical tweezers usually consists of complex software and hardware, and its performance is limited by the inevitable noise and time-delay from detecting and controlling devices. Here, we present and demonstrate the dual-beam intracavity optical tweezers enabling all-optical independent radial and axial self-feedback control of the trapped particle's radial and axial motions. We have achieved the highest optical confinement per unit intensity to date, to the best of our knowledge. Moreover, both the axial and radial confinements are adjustable in real-time, through tuning the foci offset of the clockwise and counter-clockwise beams. As a result, we realized three-dimensional self-feedback control of the trapped particle's motions with an equivalent level in the experiment. The dual-beam intracavity optical tweezers will significantly expand the range of optical manipulation in further studies of biology, physics and precise measurement, especially for the sample that is extremely sensitive to heat.

15.
Micromachines (Basel) ; 12(9)2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34577696

RESUMO

For the axisymmetric shell resonator gyroscopes, the quality factor (Q factor) of the resonator is one of the core parameters limiting their performances. Surface loss is one of the dominating losses, which is related to the subsurface damage (SSD) that is influenced by the grinding parameters. This paper experimentally studies the surface roughness and Q factor variation of six resonators ground by three different grinding speeds. The results suggest that the removal of the SSD cannot improve the Q factor continuously, and the variation of surface roughness is not the dominant reason to affect the Q factor. The measurement results indicate that an appropriate increase in the grinding speed can significantly improve the surface quality and Q factor. This study also demonstrates that a 20 million Q factor for fused silica cylindrical resonators is achievable using appropriate manufacturing processes combined with post-processing etching, which offers possibilities for developing high-precision and low-cost cylindrical resonator gyroscopes.

16.
Angew Chem Int Ed Engl ; 60(39): 21200-21204, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34297462

RESUMO

Near-infrared (NIR)-light-triggered photothermal therapy (PTT) is usually associated with undesirable damage to healthy organs nearby due to the high temperatures (>50 °C) available for tumor ablation. Low-temperature PTT would therefore have tremendous value for clinical application. Here, we construct a hypoxia-responsive gold nanorods (AuNRs)-based nanocomposite of CRISPR-Cas9 for mild-photothermal therapy via tumor-targeted gene editing. AuNRs are modified with azobenzene-4,4'-dicarboxylic acid (p-AZO) to achieve on-demand release of CRISPR-Cas9 using hypoxia-responsive azo bonds. In the hypoxic tumor microenvironment, the azo groups of the hypoxia-activated CRISPR-Cas9 nanosystem based on gold nanorods (APACPs) are selectively reduced by the overexpression of reductases, leading to the release of Cas9 and subsequent gene editing. Owing to the knockout of HSP90α for reducing the thermal resistance of cancer cells, highly effective tumor ablation both in vitro and in vivo was achieved with APACPs under mild PTT.


Assuntos
Antineoplásicos/farmacologia , Compostos Azo/farmacologia , Sistemas CRISPR-Cas/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Ácidos Dicarboxílicos/farmacologia , Ouro/farmacologia , Terapia Fototérmica , Células A549 , Antineoplásicos/química , Compostos Azo/química , Sistemas CRISPR-Cas/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Dicarboxílicos/química , Ensaios de Seleção de Medicamentos Antitumorais , Edição de Genes , Ouro/química , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/química , Tamanho da Partícula
17.
Micromachines (Basel) ; 12(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33915831

RESUMO

The cylindrical resonator gyroscope (CRG) is a type of Coriolis vibratory gyroscope which measures the angular velocity or angle through the precession of the elastic wave of the cylindrical resonator. The cylindrical fused silica resonator is an essential component of the CRG, the symmetry of which determines the bias drift and vibration stability of the gyroscope. The manufacturing errors breaking the symmetry of the resonator are usually described by Fourier series, and most studies are only focusing on analyzing and reducing the fourth harmonic error, the main error source of bias drift. The second harmonic error also is one of the obstacles for CRG towards high precision. Therefore, this paper provides a chemical method to evaluate and balance the second harmonic error of cylindrical fused silica resonators. The relation between the frequency split of the n = 1 mode and the second harmonic error of the resonator is obtained. Simulations are performed to analyze the effects of the first three harmonic errors on the frequency splits. The relation between the location of the low-frequency axis of n = 1 mode and the heavy axis of the second harmonic error is also analyzed by simulation. Chemical balancing experiments on two fused silica resonators demonstrate the feasibility of this balancing procedure, and show good consistency with theoretical and simulation analysis. The second harmonic error of the two resonators is reduced by 86.6% and 79.8%, respectively.

18.
Opt Express ; 28(24): 35734-35747, 2020 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-33379684

RESUMO

Single beam intracavity optical tweezers characterizes a novel optical trapping scheme where the laser operation is nonlinearly coupled to the motion of the trapped particle. Here, we first present and establish a physical model from a completely new perspective to describe this coupling mechanism, using transfer matrices to calculate the loss of the free-space optical path and then extracting the scattering loss that caused by the 3D motions of the particle. Based on this model, we discuss the equilibrium position in the single beam intracavity optical tweezers. The influences of the numerical aperture, pumping power, particle radius and refractive index on the optical confinement efficiency are fully investigated, compared with standard optical tweezers. Our work is highly relevant for guiding the experiments on the single beam intracavity optical tweezers to achieve higher optical confinement efficiency.

19.
Sensors (Basel) ; 20(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105911

RESUMO

The cylindrical resonator is the core component of cylindrical resonator gyroscopes (CRGs). The quality factor (Q factor) of the resonator is one crucial parameter that determines the performance of the gyroscope. In this paper, the finite element method is used to theoretically investigate the influence of the thermoelastic dissipation (TED) of the cylindrical resonator. The improved structure of a fused silica cylindrical resonator is then demonstrated. Compared with the traditional structure, the thermoelastic Q (QTED) of the resonator is increased by 122%. In addition, the Q factor of the improved cylindrical resonator is measured, and results illustrate that, after annealing and chemical etching, the Q factor of the resonator is significantly higher than that of the cylindrical resonators reported previously. The Q factor of the cylindrical resonator in this paper reaches 5.86 million, which is the highest value for a cylindrical resonator to date.

20.
Int Immunopharmacol ; 84: 106507, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32339920

RESUMO

The formation of an immunosuppressive microenvironment and up-regulation of PD-L1 protein are the main causes of tumor immune escape. Previous reports suggest that Angiotensin II (Ang II) can modulate the immune status of tumor microenvironment in non-small cell lung cancer (NSCLC), but the underlying mechanism remains not fully understood. Here we demonstrated that AngII treatment causes the reduction of intratumoral infiltrating CD4 T lymphocytes in tumor-bearing mice, increases the accumulation of immunosuppressive granulocytes and TAMs in tumor tissue, and upregulates the expression levels of immunosuppressive marker genes. In addition, AngII/AGTR1 axis triggers cell PD-L1 expression through a mechanism involving increases in PD-L1 mRNA stability by human antigen R (HuR), an AU-rich element (ARE)-binding protein. Collectively, AngII/AGTR1 signaling promotes the tumor immunosuppressive microenvironment by upregulating PD-L1 in NSCLC, the mechanism of which is largely accounted by HuR-mediated PD-L1 mRNA stabilization.


Assuntos
Angiotensina II/imunologia , Antígeno B7-H1/imunologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Tolerância Imunológica , Neoplasias Pulmonares/imunologia , Animais , Antígeno B7-H1/genética , Linhagem Celular , Humanos , Linfócitos do Interstício Tumoral/imunologia , Masculino , Camundongos Endogâmicos C57BL , RNA Mensageiro , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...