Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Liposome Res ; : 1-11, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39126197

RESUMO

To enhance cytoplasmic delivery efficiency, pH-sensitive liposomes (PSL) have been proposed as a novel strategy. To facilitate clinical translation, this study aims to understand the impact of both size and pH-sensitivity on cellular uptake pathways, intracellular trafficking and pharmacokinetics of liposomes. The large liposomes (130-160 nm) were prepared using thin-film hydration method, while small liposomes (∼60 nm) were fabricated using microfluidics, for both PSL and non-pH-sensitive liposomes (NPSL). Cellular uptake pathways and intracellular trafficking was investigated through confocal imaging with aid of various endocytosis inhibitors. Intracellular gemcitabine delivery by various liposomal formulations was quantified using HPLC, and the cytotoxicity was assessed via cell viability assays. Pharmacokinetics of gemcitabine loaded in various liposomes was evaluated in rats following intravenous administration. Larger liposomes had a higher loading capacity for hydrophilic gemcitabine (7% vs 4%). Small PSL exhibited superior cellular uptake compared to large PSL or NPSLs. Moreover, the alkalization of endosomes significantly attenuated the cellular uptake of PSL. Large liposomes (PSL and NPSL) predominantly entered cells via clathrin-dependent pathway, whereas small liposomes partially utilized caveolae-dependent pathway. However, the long circulation of the liposomes, as measured by the encapsulated gemcitabine, was compromised by both pH-sensitivity and size reduction (9.5 h vs 5.3 h). Despite this drawback, our results indicate that small PSL holds promise as vectors for the next generation of liposomal nanomedicine, owing to their superior cytoplasmic delivery efficiency.


Large liposomes had higher loading capacity for hydrophilic gemcitabine.Reduction of liposome size enhanced drug release from pH-sensitive liposomes.The internalization efficiency of liposomes was enhanced by pH-sensitivity and size reduction.Larger liposomes (>130 nm) enter cells primarily via clathrin-dependent endocytosis, while smaller liposomes (∼60 nm) partially through caveolae-mediated pathway, regardless of the pH-sensitivity.The intracellular payload release from pH-sensitive liposomes was decreased by endosome alkalization using chloroquine.Long circulation of the encapsulated gemcitabine was compromised by the pH-sensitivity and size reduction.

2.
J Control Release ; 372: 69-84, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38866244

RESUMO

Transcytosis-inducing nanomedicines have been developed to improve tumor extravasation. However, the fate during transcytosis across multicell layers and the structural integrity of the nanomedicines before reaching tumor cells could impact antitumor therapy. Here, a BAY 87-2243 (a hypoxia-inducible factor-1 inhibitor)-loaded liposomal system (HA-P-LBAY) modified by low molecular weight protamine (LMWP) and crosslinked by hyaluronic acid (HA) was constructed. This system could accomplish differentiate cellular transport in endothelial and tumor cells by fine-tuning its structural integrity, i.e. transcytosis across the endothelial cells while preserving structural integrity, facilitating subsequent retention and drug release within tumor cells via degradation-induced aggregation. In vitro cellular uptake and transwell studies demonstrated that HA-P-LBAY were internalized by endothelial cells (bEnd.3) via an active, caveolin and heparin sulfate proteoglycan (HSPG)-mediated endocytosis, and subsequently achieved transcytosis mainly through the ER/Golgi pathway. Moreover, the fluorescence resonance energy transfer (FRET) study showed that HA-crosslinking maintained higher integrity of HA-P-LBAY after transcytosis, more efficiently than electrostatic coating of HA (HA/P-LBAY). In addition, more HA-P-LBAY was retained in tumor cells (4T1) compared to HA/P-LBAY corresponding to its enhanced in vitro cytotoxicity. This may be attributed to better integrity of HA-P-LBAY post endothelial transcytosis and more degradation of HA in tumor cells, leading to more liposome aggregation and inhibition of their transcytosis, which was inferred by both TEM images and the HAase responsiveness assay proved by FRET. In vivo, HA-P-LBAY exhibited more potency in tumor suppression than the other formulations in both low and high permeability tumor models. This highlighted that fine-tuning of structural integrity of nanocarriers played a key role no matter whether the transcytosis of nanocarriers contributed to cellular transport. Collectively, this study provides a promising strategy for antitumor therapies by fine-tuning liposome integrity to achieve active trans-endothelial transport with structural integrity and selective aggregation for prolonged tumor retention.


Assuntos
Antineoplásicos , Ácido Hialurônico , Lipossomos , Protaminas , Transcitose , Animais , Ácido Hialurônico/química , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacologia , Protaminas/química , Humanos , Linhagem Celular Tumoral , Feminino , Camundongos Endogâmicos BALB C , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Camundongos , Liberação Controlada de Fármacos
3.
Clin Transl Radiat Oncol ; 45: 100723, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38282910

RESUMO

Background: Stereotactic radiosurgery (SRS) has supplanted whole brain radiotherapy (WBRT) as standard-of-care adjuvant treatment following surgery for brain metastasis (BrM). Concomitant with the adoption of adjuvant SRS, a new pattern of failure termed "Pachymeningeal failure" (PMF) has emerged. Methods: We reviewed a prospective registry of 264 BrM patients; 145 and 119 were treated adjuvantly with WBRT and SRS, respectively. The Cox proportional hazards model was used to identify variables correlating to outcomes. Outcomes were calculated using the cumulative incidence (CI) method. Univariate (UVA) and multivariate analyses (MVA) were done to identify factors associated with PMF. Results: CI of PMF was 2 % and 18 % at 12 months, and 2 % and 23 % at 24 months for WRBT and SRS, respectively (p < 0.001). The CI of classic leptomeningeal disease (LMD) was 3 % and 4 % at 12 months, and 6 % and 6 % at 24 months for WBRT and SRS, respectively (P = 0.67). On UVA, adjuvant SRS [HR 9.75 (3.43-27.68) (P < 0.001)]; preoperative dural contact (PDC) [HR 6.78 (1.64-28.10) (P = 0.008)]; GPA score [HR 1.64 (1.11-2.42) (P = 0.012)]; and lung EGFR/ALK status [HR 3.11 (1.02-9.45) (P = 0.045)]; were associated with PMF risk. On MVA, adjuvant SRS [HR 8.15 (2.69-24.7) (P < 0.001)]; and PDC [HR 6.28 (1.51-26.1) (P = 0.012)] remained associated with PMF. Conclusions: Preoperative dural contact and adjuvant SRS instead of adjuvant WBRT were associated with an increased risk of PMF. Strategies to improve pachymeningeal radiation coverage to sterilize at risk pachymeninges should be investigated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA