Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(48): 19805-19816, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37934905

RESUMO

Iron (Fe) is an essential micronutrient that affects biological production. Iron-containing clay minerals are an important source of bioavailable iron. However, the dissolution of iron-containing clay minerals at temperatures below the freezing point has not been investigated. Here, we demonstrate the enhanced reductive dissolution of iron from a clay mineral in ice in the presence of iodide (I-) as the electron donor. The accelerated production of dissolved iron in the frozen state was irreversible, and the freeze concentration effect was considered the main driving force. Furthermore, the formation of magnetite (Fe3O4) after the freezing process was observed using transmission electron microscopy analysis. Our results suggest a new mechanism of accelerated abiotic reduction of Fe(III) in clay minerals, which may release bioavailable iron, Fe(II), and reactive iodine species into the natural environment. We also propose a novel process for magnetite formation in ice. The freezing process can serve as a source of bioavailable iron or act as a sink, leading to the formation of magnetite.


Assuntos
Óxido Ferroso-Férrico , Ferro , Argila , Congelamento , Gelo , Minerais , Oxirredução , Compostos Férricos
2.
Science ; 370(6521): 1230-1234, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33273103

RESUMO

Microorganisms in marine subsurface sediments substantially contribute to global biomass. Sediments warmer than 40°C account for roughly half the marine sediment volume, but the processes mediated by microbial populations in these hard-to-access environments are poorly understood. We investigated microbial life in up to 1.2-kilometer-deep and up to 120°C hot sediments in the Nankai Trough subduction zone. Above 45°C, concentrations of vegetative cells drop two orders of magnitude and endospores become more than 6000 times more abundant than vegetative cells. Methane is biologically produced and oxidized until sediments reach 80° to 85°C. In 100° to 120°C sediments, isotopic evidence and increased cell concentrations demonstrate the activity of acetate-degrading hyperthermophiles. Above 45°C, populated zones alternate with zones up to 192 meters thick where microbes were undetectable.


Assuntos
Bactérias Formadoras de Endosporo/crescimento & desenvolvimento , Sedimentos Geológicos/microbiologia , Temperatura Alta , Acetatos/metabolismo , Bactérias Formadoras de Endosporo/metabolismo , Sedimentos Geológicos/química , Metano/metabolismo
3.
Sci Rep ; 10(1): 3407, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32099024

RESUMO

Sodium is an essential component of the human body, with known influences on obesity. This paper reports the effect of cube natural sea salt (CNS) on the reduction of obesity in high fat diet-induced obese C57BL/6 mice and 3T3-L1 adipocytes, by ameliorating the obesity parameters and obesity-related gene mechanisms. The suppression of high fat diet-induced obesity and differentiated 3T3-L1 adipocytes by sea salt depends on the manufacturing process and mineral content. The manufacturing method using only new sea water (Cube natural sea salt) decreases the magnesium (Mg) and sulfur (S) content in the salt with different crystallization and morphologies, compared to the general manufacturing method (Generally manufactured sea salt, GS). Mg in salt is known to considerably affect obesity; an appropriate concentration of magnesium chloride (MgCl2) reduces lipid accumulation significantly and regulates the lipogenesis and liver enzyme activity. Our results indicate that sea salt contains an appropriate level of Mg as compared to table salt (purified salt, NaCl), and is important for regulating obesity, as observed in the in vivo and in vitro anti-obesity effects of CNS. The Mg content and mineral ratio of sea salt are important factors that ameliorate the lipid metabolism and liver enzyme activity in high fat diet induced obesity, and contents of Mg in sea salt can be altered by modifying the manufacturing process.


Assuntos
Gorduras na Dieta/efeitos adversos , Magnésio/farmacologia , Obesidade , Cloreto de Sódio na Dieta/farmacologia , Células 3T3-L1 , Animais , Gorduras na Dieta/farmacologia , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia
4.
Nat Commun ; 10(1): 5786, 2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31857591

RESUMO

Recent recession of the Larsen Ice Shelf C has revealed microbial alterations of illite in marine sediments, a process typically thought to occur during low-grade metamorphism. In situ breakdown of illite provides a previously-unobserved pathway for the release of dissolved Fe2+ to porewaters, thus enhancing clay-rich Antarctic sub-ice shelf sediments as an important source of Fe to Fe-limited surface Southern Ocean waters during ice shelf retreat after the Last Glacial Maximum. When sediments are underneath the ice shelf, Fe2+ from microbial reductive dissolution of illite/Fe-oxides may be exported to the water column. However, the initiation of an oxygenated, bioturbated sediment under receding ice shelves may oxidize Fe within surface porewaters, decreasing dissolved Fe2+ export to the ocean. Thus, we identify another ice-sheet feedback intimately tied to iron biogeochemistry during climate transitions. Further constraints on the geographical extent of this process will impact our understanding of iron-carbon feedbacks during major deglaciations.


Assuntos
Bactérias/metabolismo , Sedimentos Geológicos/microbiologia , Camada de Gelo/microbiologia , Ferro/química , Minerais/análise , Regiões Antárticas , Bactérias/química , Bactérias/isolamento & purificação , Sequestro de Carbono , Mudança Climática , Sedimentos Geológicos/química , Camada de Gelo/química , Oxigênio/química , Água do Mar/química , Água do Mar/microbiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...