Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(6): 7911-7918, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36719898

RESUMO

Achieving large-area organic photovoltaic (OPV) modules with reasonable cost and performance is an important step toward commercialization. In this work, solution-processed conventional and inverted OPV modules with an area of 216 cm2 were fabricated by the blade coating method. Film uniformity was controlled by adjusting the fabrication parameters of the blade coating procedure. The influence of the concentration of the solutions of the interfacial materials on OPV module performance was investigated. For OPV modules based on the PM6:Y6 photoactive layer, a certificated power conversion efficiency (PCE) of 9.10% was achieved for the conventional OPV modules based on the TASiW-12 interfacial layer while a certificated PCE of 11.27% was achieved for the inverted OPV modules based on the polyethylenimine (PEI) interfacial layer. As for OPV modules based on a commercially available photoactive layer, PV-X Plus, a PCE of 8.52% was achieved in the inverted OPV modules. A halogen-free solvent, o-xylene, was used as the solvent for PV-X Plus, which makes the industrial production much more environmentally friendly.

2.
ACS Appl Mater Interfaces ; 14(48): 54090-54100, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36420750

RESUMO

Chiral halide perovskites have attracted considerable attention because of their chiroptical, second-harmonic generation, and ferroelectricity properties and their potential application in chiroptoelectronics and chiral spintronics. However, the fundamental research of these properties is insufficient. In this work, chiral perovskites were synthesized using precursor solutions with various stoichiometric ratios ⟨n⟩. The chiral perovskite film prepared from the solution with ⟨n⟩ = 1 is composed of (R-/S-/rac-MBA)2PbBr4, whereas the films prepared from the solutions with ⟨n⟩ larger than 1 are a mixture of (R-/S-/rac-MBA)2(CsMA)n-1PbnBr3n+1 with n = 1 and large n values. A photoluminescence quantum yield of approximately 90 was obtained. Symmetric circular dichroism (CD) spectra were observed without an external magnetic field. Under various magnetic fields, magnetic field-induced CD features are superimposed with the intrinsic chirality-induced CD features. For the ⟨n⟩ = 1 chiral perovskite film, the energy level splitting induced by chiral molecules are a few 10 µeV, whereas the energy level splitting induced by magnetic fields are at the range of ∼-250 to ∼250 µeV. Circularly polarized photoluminescence spectra were observed at room temperature and associated with the spin-preserved energy funneling from highly energetic phases to the lower energetic phases.

3.
Angew Chem Int Ed Engl ; 60(39): 21434-21440, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34319649

RESUMO

Through the incorporation of various halogen-substituted chiral organic cations, the effects of chiral molecules on the chiroptical properties of hybrid organic-inorganic perovskites (HOIPs) are investigated. Among them, the HOIP having a Cl-substituted chiral cation exhibits the highest circular dichroism (CD) and circular polarized luminescence (CPL) intensities, indicating the existence of the largest rotatory strength, whereas the F-substituted HIOP shows the weakest intensities. The observed modulation can be correlated to the varied magnetic transition dipole of HOIPs, which is sensitive to the d-spacing between inorganic layers and the halogen-halogen interaction between organic cations and the inorganic sheets. These counteracting effects meet the optimal CD and CPL intensity with chlorine substitution, rendering the rotatory strength of HOIPs arranged in the order of (ClMBA)2 PbI4 >(BrMBA)2 PbI4 >(IMBA)2 PbI4 >(MBA)2 PbI4 >(FMBA)2 PbI4 .

4.
RSC Adv ; 10(48): 28766-28777, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35520068

RESUMO

Improving the stability of large-area organic light-emitting diodes is very important for practical applications. The interfacial layer plays a crucial role to improve the electron injection characteristic. In this work, devices prepared by various solution-processed interfacial materials and thermal-evaporated CsF were compared. In the devices with active area of 2.25 mm × 2.25 mm, we found that the performance and lifetime of the device with solution-processed Liq interfacial layer was comparable with the device with thermal-evaporated CsF. However, for the devices with active area of 2.4 cm × 3.7 cm, the device based on thermal-evaporated CsF was the champion in both performance and lifetime. The influence of the thickness of CsF on the stability was investigated. The most stable blue fluorescent devices can be achieved when the thickness of CsF is about 0.1 nm, while the most stable green phosphorescent devices can be obtained by depositing 0.2 nm CsF. The best current efficiency for the blue fluorescent device is 4 cd A-1, while the best one for the green phosphorescent device is 22 cd A-1. Furthermore, burning points causing the failure of the devices were investigated by scanning electron microscopy, atomic force microscopy, thermography and secondary ion mass spectrometry. We demonstrated that burning points are defects, which can be observed after long-time operation, showing higher local temperature and fragmentary electrode.

5.
Chempluschem ; 84(9): 1375-1383, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944041

RESUMO

The instability of the organic light-emitting diodes (OLEDs) during operation can be attributed to the existence of point defects on the organic layers. In this work, the effect of mixed-host emissive layer and the thermal annealing treatment were investigated to eliminate defects and to boost the device performance. The mixed-host system includes 4,4',4''-tri (9-carbazoyl) triphenylamine (TCTA) and 2,7-bis(diphenylphosphoryl)-9, 9'-spirobi[fluorene] (SPPO13). The mixed-host emissive layer with thermal annealing treatment showed low roughness and few pinholes, and the devices fabricated from this emissive layer exhibited high efficiencies, high stabilities, and long lifetimes. The red and orange-red OLEDs exhibited efficiencies of 13.9 cd/A and 24.35 cd/A, respectively. The longest half-lifetime (L0 =500 cd/m2 ) of the red and orange-red OLEDs were 158 h and 180 h, respectively. Efforts were made to solve problems in large-area coating and to reduce the number of defects on in organic layer. Large-active-area (active area=3 cm×4 cm) red phosphorescent OLEDs (PhOLEDs) devices were realized with very high current efficiency up to 9 cd/A.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...