Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Entropy (Basel) ; 26(2)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38392416

RESUMO

Correlations between exchange rates are valuable for illuminating the dynamics of international trade and the financial dynamics of countries. This paper explores the changing interactions of the US foreign exchange market based on detrended cross-correlation analysis. First, we propose an objective way to choose a time scale parameter appropriate for comparing different samples by maximizing the summed magnitude of all DCCA coefficients. We then build weighted signed networks under this optimized time scale, which can clearly display the complex relationships between different exchange rates. Our study shows negative cross-correlations have become pyramidally rare in the past three decades. Both the number and strength of positive cross-correlations have grown, paralleling the increase in global interconnectivity. The balanced strong triads are identified subsequently after the network centrality analysis. Generally, while the strong development links revealed by foreign exchange have begun to spread to Asia since 2010, Europe is still the center of world finance, with the euro and Danish krone consistently maintaining the closest balanced development relationship. Finally, we propose a fluctuation propagation algorithm to investigate the propagation pattern of fluctuations in the inferred exchange rate networks. The results show that, over time, fluctuation propagation patterns have become simpler and more predictable.

2.
PeerJ Comput Sci ; 9: e1757, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38192474

RESUMO

Test-time augmentation (TTA) is a well-established technique that involves aggregating transformed examples of test inputs during the inference stage. The goal is to enhance model performance and reduce the uncertainty of predictions. Despite its advantages of not requiring additional training or hyperparameter tuning, and being applicable to any existing model, TTA is still in its early stages in the field of NLP. This is partly due to the difficulty of discerning the contribution of different transformed samples, which can negatively impact predictions. In order to address these issues, we propose Selective Test-Time Augmentation, called STTA, which aims to select the most beneficial transformed samples for aggregation by identifying reliable samples. Furthermore, we analyze and empirically verify why TTA is sensitive to some text data augmentation methods and reveal why some data augmentation methods lead to erroneous predictions. Through extensive experiments, we demonstrate that STTA is a simple and effective method that can produce promising results in various text classification tasks.

3.
Adv Mater ; 34(49): e2207344, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36177699

RESUMO

Aqueous Zn-ion batteries are well regarded among a next-generation energy-storage technology due to their low cost and high safety. However, the unstable stripping/plating process leading to severe dendrite growth under high current density and low temperature impede their practical application. Herein, it is demonstrated that the addition of 2-propanol can regulate the outer solvation shell structure of Zn2+ by replacing water molecules to establish a "eutectic solvation shell", which provides strong affinity with the Zn (101) crystalline plane and fast desolvation kinetics during the plating process, rendering homogeneous Zn deposition without dendrite formation. As a result, the Zn anode exhibits promising cycle stability over 500 h under an elevated current density of 15 mA cm-2 and high depth of discharge of 51.2%. Furthermore, remarkable electrochemical performance is achieved in a 150 mAh Zn|V2 O5 pouch cell over 1000 cycles at low temperature of -20 °C. This work not only offers a new strategy to achieve excellent performance of aqueous Zn-ion batteries under harsh conditions, but also reveals electrolyte structure designs that can be applied in related energy storage and conversion fields.

4.
Adv Mater ; 34(44): e2203417, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35901220

RESUMO

The construction of robust (quasi)-solid-state electrolyte (SSE) for flexible lithium-metal batteries is desirable but extremely challenging. Herein, a novel, flexible, and robust quasi-solid-state electrolyte (QSSE) with a "tree-trunk" design is reported for ultralong-life lithium-metal batteries (LMBs). An in-situ-grown metal-organic framework (MOF) layer covers the cellulose-based framework to form hierarchical ion-channels, enabling rapid ionic transfer kinetics and excellent durability. A conductivity of 1.36 × 10-3  S cm-1 , a transference number of 0.72, an electrochemical window of 5.26 V, and a good rate performance are achieved. The flexible LMBs fabricated with as-designed QSSEs deliver areal capacity of up to 3.1 mAh cm-2 at the initial cycle with high mass loading of 14.8 mg cm-2 in Li-NCM811 cells and can retain ≈80% capacity retention after 300 cycles. An ultralong-life of 3000 cycles (6000 h) is also achieved in Li-LiFePO4 cells. This work presents a promising route in constructing a flexible QSSE toward ultralong-life LMBs, and also provides a design rationale for material and structure development in the area of energy storage and conversion.

5.
Adv Mater ; 34(18): e2110585, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35316552

RESUMO

Manufacturing advanced solid-state electrolytes (SSEs) for flexible rechargeable batteries becomes increasingly important but remains grand challenge. The sophisticated structure of robust animal dermis and good water-retention of plant cell in nature grant germane inspirations for designing high-performance SSEs. Herein, tough bioinspired SSEs with intrinsic hydroxide ion (OH- ) conduction are constructed by in situ formation of OH- conductive ionomer network within a hollow-polymeric-microcapsule-decorated hydrogel polymer network. By virtue of the bioinspired design and dynamic dual-penetrating network structure, the bioinspired SSEs simultaneously obtain mechanical robustness with 1800% stretchability, good water uptake of 107 g g-1 and water retention, and superhigh ion conductivity of 215 mS cm-1 . The nanostructure of bioinspired SSE and related ion-conduction mechanism are revealed and visualized by molecular dynamics simulation, where plenty of compact and superfast ion-transport channels are constructed, contributing to superhigh ion conductivity. As a result, the flexible solid-state zinc-air batteries assembled with bioinspired SSEs witness high power density of 148 mW cm-2 , specific capacity of 758 mAh g-1 and ultralong cycling stability of 320 h as well as outstanding flexibility. The bioinspired methodology and deep insight of ion-conduction mechanism will shed light on the design of advanced SSEs for flexible energy conversion and storage systems.


Assuntos
Eletrólitos , Zinco , Fontes de Energia Elétrica , Eletrólitos/química , Hidrogéis/química , Polímeros/química , Água , Zinco/química
6.
Adv Mater ; 34(16): e2108079, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34963198

RESUMO

Although one of the most mature battery technologies, lithium-ion batteries still have many aspects that have not reached the desired requirements, such as energy density, current density, safety, environmental compatibility, and price. To solve these problems, all-solid-state lithium batteries (ASSLB) based on lithium metal anodes with high energy density and safety have been proposed and become a research hotpot in recent years. Due to the advanced electrochemical properties of 2D materials (2DM), they have been applied to mitigate some of the current problems of ASSLBs, such as high interface impedance and low electrolyte ionic conductivity. In this work, the background and fabrication method of 2DMs are reviewed initially. The improvement strategies of 2DMs are categorized based on their application in the three main components of ASSLBs: The anode, cathode, and electrolyte. Finally, to elucidate the mechanisms of 2DMs in ASSLBs, the role of in situ characterization, synchrotron X-ray techniques, and other advanced characterization are discussed.

7.
Chem Soc Rev ; 49(4): 1071-1089, 2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-31971530

RESUMO

Two-dimensional (2D) nanosheets have emerged as promising functional materials owing to their atomic thickness and unique physical/chemical properties. By using 2D nanosheets as building blocks, diverse kinds of two-dimensional nanochannel membranes (2DNCMs) are being actively explored, in which mass transport occurs in the through-plane and interlayer channels of 2D nanosheets. The rational construction and physical/chemical microenvironment regulation of nanochannels are of vital significance for translating these 2D nanosheets into molecular separation membranes and ionic separation membranes. Focusing on the recent advances of 2DNCMs, in this review, various porous/nonporous 2D nanosheets and their derived nanochannels are first briefly introduced. Then we discuss the emerging top-down and bottom-up methods to synthesize high-quality 2D nanosheets and to prepare high-performance 2DNCMs. As the major part of this review, we focus on three types of nanochannels, which are based on nonporous nanosheets, intrinsically porous nanosheets and perforated nanosheets. The strategies for regulating the physical and chemical microenvironments in the nanochannels are emphasized. The representative applications of 2DNCMs in molecular separations (gas separation, liquid separation) and ionic separations are presented. Finally, the current challenges and future perspectives are highlighted.

8.
Nat Commun ; 10(1): 2101, 2019 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-31068595

RESUMO

Covalent organic frameworks (COFs) hold great promise in molecular separations owing to their robust, ordered and tunable porous network structures. Currently, the pore size of COFs is usually much larger than most small molecules. Meanwhile, the weak interlamellar interaction between COF nanosheets impedes the preparation of defect-free membranes. Herein, we report a series of COF membranes through a mixed-dimensional assembly of 2D COF nanosheets and 1D cellulose nanofibers (CNFs). The pore size of 0.45-1.0 nm is acquired from the sheltering effect of CNFs, rendering membranes precise molecular sieving ability, besides the multiple interactions between COFs and CNFs elevate membrane stability. Accordingly, the membranes exhibit a flux of 8.53 kg m-2 h-1 with a separation factor of 3876 for n-butanol dehydration, and high permeance of 42.8 L m-2 h-1 bar-1 with a rejection of 96.8% for Na2SO4 removal. Our mixed-dimensional design may inspire the fabrication and application of COF membranes.

9.
Chem Soc Rev ; 46(22): 6725-6745, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29022021

RESUMO

Biological membranes possess hierarchical channels and thus exhibit ultrahigh permselectivity for molecules and ions. Intrigued by the delicate structure and transport mechanisms in biochannels, polymer composite membranes with selective transport channels are successfully fabricated for diverse energy- and environment-related applications. This tutorial review aims to present the latest progress in the design and construction of selective molecule/ion transport channels within polymer composite membranes with emphasis on the regulation of the physical and chemical microenvironments of these channels. The concluding remarks are presented with a tentative perspective on the future research and development of highly efficient channel-facilitated molecule/ion transport across polymer composite membranes.

10.
Angew Chem Int Ed Engl ; 56(45): 14246-14251, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28940964

RESUMO

Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO2 to implement efficient separations, gas separation membranes containing CO2 -philic and non-CO2 -philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO2 -philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non-CO2 -philic nanodomains, rendering low-friction diffusion. Owing to the orderly stacking of nanochannels through cross-linking and the heterogeneous nanodomains with moderate CO2 affinity, a GO-PEGDA500 membrane exhibits a high CO2 permeance of 175.5 GPU and a CO2 /CH4 selectivity of 69.5, which is the highest performance reported for dry-state GO-stacking membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...