Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Melanoma Res ; 31(4): 298-308, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039939

RESUMO

Melanoma is a malignant tumor with high metastasis and mortality. Epithelial-mesenchymal transition (EMT) was reported to be involved in the growth and metastasis of melanoma. To investigate these sections further, we showed that E26 transformation specific 1 (ETS1) could regulate growth, metastasis and EMT process of melanoma by regulating microRNA(miR)-16/SRY-related HMG box (SOX) 4 expression. MiR-16, ETS1, SOX4 and nuclear factor κB (NF-κB) expression levels in melanoma cells were examined using qPCR. ETS1, SOX4, EMT-related proteins and NF-κB signaling pathway-related proteins were examined using western blot. Cell counting kit-8 assay, transwell assay were applied to evaluate the cell proliferation, migration and invasion of melanoma cells, respectively. Besides, a dual-luciferase reporter assay was employed to verify the binding relationship between ETS1 and miR-16, miR-16 and SOX4, miR-16 and NF-κB1. We showed that ETS1 and SOX4 were upregulated in melanoma cells, while miR-16 was downregulated. MiR-16 overexpression suppressed growth, metastasis and EMT process of melanoma. We found ETS1 could bind to the promoter region of miR-16 and inhibited its transcription. ETS1 silence could inhibit growth, metastasis and EMT process of melanoma, and inhibition of miR-16 could reverse the effects. Besides, miR-16 is directly bound to SOX4 and downregulated its expression. Rescued experiments confirmed that SOX4 overexpression abolished the inhibition effect of miR-16 mimics on growth, metastasis and EMT process of melanoma. Finally, NF-κB1 as the target of miR-16 mediated downstream biological responses. ETS1 activated NF-κB signaling pathway through miR-16 via targeting SOX4, thus promoting growth, metastasis and EMT of melanoma.


Assuntos
Transição Epitelial-Mesenquimal/genética , Melanoma/genética , MicroRNAs/metabolismo , Proteína Proto-Oncogênica c-ets-1/metabolismo , Fatores de Transcrição SOXC/metabolismo , Neoplasias Cutâneas/genética , Humanos , Melanoma/patologia , Metástase Neoplásica , Neoplasias Cutâneas/patologia , Transfecção
2.
Onco Targets Ther ; 13: 12999-13013, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33376349

RESUMO

BACKGROUND: Gastric cancer (GC) is a common cancer with high incidence and mortality worldwide. In recent years, accumulating evidence has shown that long noncoding RNAs (lncRNAs) exert critical roles in the development and progression of cancer by acting as a tumor initiator or suppressor. LINC00963 is a newly reported lncRNA related to cancer, and its role in GC remains unclear. MATERIALS AND METHODS: The expression levels of LINC00963, miR-612, and cell division cycle 5-like protein (CDC5L) were measured using quantitative real-time PCR or Western blot. The biological functions of LINC00963, miR-612, and CDC5L in GC cells were analyzed by transwell and proliferation experiments. The expression of CDC5L in patients with GC was evaluated using the Oncomine database. Bone marrow-derived dendritic cells (DCs) were derived from C57BL/6 mice. RESULTS: LINC00963 expression was higher in GC tissues than in adjacent normal tissues. Similar results were found in GC cell lines and normal human gastric epithelial cells. Upregulation of LINC00963 was related to the poor prognosis of patients with GC. Knockdown of LINC00963 inhibited the proliferation, invasion, and metastasis but promoted the apoptosis of GC cells. Furthermore, silencing of LINC00963 in GC cells significantly suppressed the tumor growth of GC. Bioinformatics analysis indicated that LINC00963 could target miR-612 by functioning as a competing endogenous RNA. The expression of miR-612 decreased in GC tissues and cell lines. Meanwhile, LINC00963 expression was negatively associated with miR-612. CDC5L was a direct target of miR-612. miR-612 suppressed the expression of CDC5L in GC tissues and cells. Moreover, LINC00963 inhibited the differentiation and maturation of DCs by regulating miR-612 expression in DCs. CONCLUSION: LINC00963 promoted the progression of GC by competitively binding to miR-612 to regulate the expression of CDC5L and mediated DC-related anti-tumor immune response. Thus, targeting LINC00963 may be a promising therapeutic strategy for GC.

3.
Chem Asian J ; 13(13): 1699-1709, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29722159

RESUMO

The development of novel iridium(III) complexes has continued as an important area of research owing to their highly tunable photophysical properties and versatile applications. In this report, three heteroleptic dimesitylboron-containing iridium(III) complexes, [Ir(p-B-ppy)2 (N^N)]+ {p-B-ppy=2-(4-dimesitylborylphenyl)pyridine; N^N=dipyrido[3,2-a:2',3'-c]phenazine (dppz) (1), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) (2), and 1,10-phenanthroline (phen) (3)}, were prepared and fully characterized electrochemically, photophysically, and computationally. Altering the conjugated length of the N^N ligands allowed us to tailor the photophysical properties of these complexes, especially their luminescence wavelength, which could be adjusted from λ=583 to 631 nm in CH2 Cl2 . All three complexes were evaluated as visible-light-absorbing sensitizers for the photogeneration of hydrogen from water and as photocatalysts for the photopolymerization of methyl methacrylate. The results showed that all of them were active in both photochemical reactions. High activity for the photosensitizer (over 1158 turnover numbers with 1) was observed, and the system generated hydrogen even after 20 h. Additionally, poly(methyl methacrylate) with a relatively narrow molecular-weight distribution was obtained if an initiator (i.e., ethyl α-bromophenylacetate) was used. The living character of the photoinduced polymerization was confirmed on the basis of successful chain-extension experiments.

4.
Dalton Trans ; 47(16): 5652-5659, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29623329

RESUMO

Expanding the photoresponse range of TiO2-based photocatalysts is of great interest for photocatalytic H2 production. Herein, noble-metal-free CuInS2 quantum dots were employed as a novel inorganic dye to expand the visible light absorption of TiO2/MoS2 for solar H2 generation. The as-prepared CuInS2/TiO2/MoS2 photocatalysts exhibit broad absorption from the ultraviolet to near-infrared region. Under visible light irradiation (λ > 420 nm), the CuInS2/TiO2/MoS2 photocatalyst with 0.6 mmol g-1 CuInS2 and 0.5 wt% MoS2 showed the highest H2 evolution rate with a value of 1034 µmol h-1 g-1. Moreover, a considerable H2 evolution rate of 141 µmol h-1 g-1 was obtained under the irradiation of the optimized CuInS2/TiO2/MoS2 photocatalyst with >500 nm light. The reaction mechanism of the CuInS2/TiO2/MoS2 photocatalyst for photocatalytic H2 evolution was investigated in detail by photoluminescence decay study, and the results showed that the photoexcited electrons of CuInS2 can be transferred efficiently through TiO2 to MoS2 and then react with the absorbed protons to generate H2. The reported sensitization strategy tremendously improves the visible light absorption capacity and the photocatalytic performance of TiO2-based photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...