Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; : 106048, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38838825

RESUMO

Four new phenols and one new aminobenzoic acid derivative, with five known phenols were isolated from the roots of Rhus chinensis Mill. Their structures were elucidated by UV, IR, HRESIMS, 1D and 2D NMR spectra, as well as optical rotations. Compound 4 significantly inhibited mouse ear inflammation (inhibitory rate of 44.03%), and significantly extended the time of pain response (extension rate of 48.55%), showing significant anti-inflammatory and analgesic effects in vivo.

2.
Sci Adv ; 10(20): eado1281, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38748802

RESUMO

The twist engineering of moiré superlattice in van der Waals heterostructures of transition metal dichalcogenides can manipulate valley physics of interlayer excitons (IXs), paving the way for next-generation valleytronic devices. However, the twist angle-dependent control of excitonic potential on valley polarization is not investigated so far in electrically controlled heterostructures and the physical mechanism underneath needs to be explored. Here, we demonstrate the dependence of both polarization switching and degree of valley polarization on the moiré period. We also find the mechanisms to reveal the modulation of twist angle on the exciton potential and the electron-hole exchange interaction, which elucidate the experimentally observed twist angle-dependent valley polarization of IXs. Furthermore, we realize the valley-addressable devices based on polarization switch. Our work demonstrates the manipulation of the valley polarization of IXs by tunning twist angle in electrically controlled heterostructures, which opens an avenue for electrically controlling the valley degrees of freedom in twistronic devices.

3.
Colloids Surf B Biointerfaces ; 239: 113882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38593511

RESUMO

Bacterial infections threaten public health, and novel therapeutic strategies critically demand to be explored. Herein, poly(amino acid) (PAA)-based drug delivery nanoparticles (NPs) were designed for eliminating Methicillin resistant Staphylococcus aureus (MRSA) via tunable release of antibiotic. Using N-acryloyl amino acids (valine, valine methyl ester, aspartic acid, serine) as monomers, four kinds of amphiphilic PAAs were synthesized via photoinduced electron/energy transfer-reversible addition fragmentation chain-transfer (PET-RAFT) polymerization and were further assembled into nano-sized delivery systems. Their assemble behavior was drove mainly by hydrophobic/hydrophilic interaction, which determined the particle size, efficacy of drug loading and release; but numerous hydrogen bonding (HB) interaction also played an important role in regulating morphologies of the NPs and enriching drug-binding capacity. By changing the HB- and hydrophobic-interaction of the PAAs, the particle sizes (240.7 nm-302.7 nm), the drug loading efficiency (9.57%-19.76%), and the Rifampicin (Rif) release rate (49.6%-69.7%) of the PAA-based NPs could be tunable. Specially, the antimicrobial properties of the Rif-loaded NPs are found to be related to the release of Rif, which was determined by its hydrophobic interaction with hydrophobic blocks and HB interaction with hydrophilic blocks. These studies provide a new outlook for the design of delivery systems for the therapy of bacterial infection.


Assuntos
Aminoácidos , Antibacterianos , Liberação Controlada de Fármacos , Staphylococcus aureus Resistente à Meticilina , Nanopartículas , Tamanho da Partícula , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Aminoácidos/química , Testes de Sensibilidade Microbiana , Sistemas de Liberação de Medicamentos , Rifampina/farmacologia , Rifampina/química , Polímeros/química , Polímeros/farmacologia , Interações Hidrofóbicas e Hidrofílicas
4.
Environ Sci Technol ; 58(12): 5557-5566, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412381

RESUMO

Wet flue gas denitrification offers a new route to convert industrial nitrogen oxides (NOx) into highly concentrated nitrate wastewater, from which the nitrogen resource can be recovered to ammonia (NH3) via electrochemical nitrate reduction reactions (NITRRs). Low-cost, scalable, and efficient cathodic materials need to be developed to enhance the NH3 production rate. Here, in situ electrodeposition was adopted to fabricate a foamy Cu-based heterojunction electrode containing both Cu-defects and oxygen vacancy loaded Cu2O (OVs-Cu2O), which achieved an NH3 yield rate of 3.59 mmol h-1 cm-2, NH3 Faradaic efficiency of 99.5%, and NH3 selectivity of 100%. Characterizations and theoretical calculations unveiled that the Cu-defects and OVs-Cu2O heterojunction boosted the H* yield, suppressed the hydrogen evolution reaction (HER), and served as dual reaction sites to coherently match the tandem reactions kinetics of NO3-to-NO2 and NO2-to-NH3. An integrated system was further built to combine wet flue gas denitrification and desulfurization, simultaneously converting NO and SO2 to produce the (NH4)2SO4 fertilizer. This study offers new insights into the application of low-cost Cu-based cathode for electrochemically driven wet denitrification wastewater valorization.


Assuntos
Amônia , Águas Residuárias , Nitratos/química , Dióxido de Nitrogênio , Desnitrificação , Eletrodos
5.
BMC Genomics ; 24(1): 423, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37501164

RESUMO

BACKGROUND: Long terminal repeat (LTR)-retrotransposons (LTR-RTs) are ubiquitous and make up the majority of nearly all sequenced plant genomes, whereas their pivotal roles in genome evolution, gene expression regulation as well as their epigenetic regulation are still not well understood, especially in a large number of closely related species. RESULTS: Here, we analyzed the abundance and dynamic evolution of LTR-RTs in 54 species from an economically and agronomically important family, Fabaceae, and also selected two representative species for further analysis in expression of associated genes, transcriptional activity and DNA methylation patterns of LTR-RTs. Annotation results revealed highly varied proportions of LTR-RTs in these genomes (5.1%~68.4%) and their correlation with genome size was highly positive, and they were significantly contributed to the variance in genome size through species-specific unique amplifications. Almost all of the intact LTR-RTs were inserted into the genomes 4 Mya (million years ago), and more than 50% of them were inserted in the last 0.5 million years, suggesting that recent amplifications of LTR-RTs were an important force driving genome evolution. In addition, expression levels of genes with intronic, promoter, and downstream LTR-RT insertions of Glycine max and Vigna radiata, two agronomically important crops in Fabaceae, showed that the LTR-RTs located in promoter or downstream regions suppressed associated gene expression. However, the LTR-RTs within introns promoted gene expression or had no contribution to gene expression. Additionally, shorter and younger LTR-RTs maintained higher mobility and transpositional potential. Compared with the transcriptionally silent LTR-RTs, the active elements showed significantly lower DNA methylation levels in all three contexts. The distributions of transcriptionally active and silent LTR-RT methylation varied across different lineages due to the position of LTR-RTs located or potentially epigenetic regulation. CONCLUSION: Lineage-specific amplification patterns were observed and higher methylation level may repress the activity of LTR-RTs, further influence evolution in Fabaceae species. This study offers valuable clues into the evolution, function, transcriptional activity and epigenetic regulation of LTR-RTs in Fabaceae genomes.


Assuntos
Fabaceae , Retroelementos , Retroelementos/genética , Epigênese Genética , Fabaceae/genética , Evolução Molecular , Genoma de Planta , Sequências Repetidas Terminais/genética , Filogenia
6.
Nanomaterials (Basel) ; 13(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446485

RESUMO

Inconel 718 (IN 718) superalloys are widely used as engineering materials owing to their superior mechanical performance. And voids are unavoidable defects in IN 718 superalloy preparation, which dramatically affect the mechanical properties of IN 718 superalloys. In this work, the effects of void radius, distance from the top of the void to the substrate surface, and substrate temperature on the mechanical properties of the Ni/Ni3Al crystal are systematically investigated. It is shown that voids affect the formation of stair-rod dislocations and Shockley dislocations in the substrate, which in turn determines the mechanical properties. Thus, with the increase in void radius, Young's modulus and hardness gradually decrease. With the increase in void distance, Young's modulus and hardness increase and finally tend to be stable. In addition, the increase in substrate temperature leads to the interphase boundary becoming irregular and increases the defects in the γ and γ″ phases. As a result, Young's modulus and hardness of the substrate decrease. This work aims to provide a guideline for investigating the indentation properties of Ni-based superalloys using MD.

7.
Nat Commun ; 14(1): 4265, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37460549

RESUMO

Single photon emission of quantum emitters (QEs) carrying internal degrees of freedom such as spin and angular momentum plays an important role in quantum optics. Recently, QEs in two-dimensional semiconductors have attracted great interest as promising quantum light sources. However, whether those QEs are characterized by the same valley physics as delocalized valley excitons is still under debate. Moreover, the potential applications of such QEs still need to be explored. Here we show experimental evidence of valley symmetry breaking for neutral QEs in WSe2 monolayer by interacting with chiral plasmonic nanocavities. The anomalous magneto-optical behaviour of the coupled QEs suggests that the polarization state of emitted photon is modulated by the chiral nanocavity instead of the valley-dependent optical selection rules. Calculations of cavity quantum electrodynamics further show the absence of intrinsic valley polarization. The cavity-dependent circularly polarized single-photon output also offers a strategy for future applications in chiral quantum optics.

8.
Opt Express ; 31(6): 10348-10357, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157583

RESUMO

We report the slow-light enhanced spin-resolved in-plane emission from a single quantum dot (QD) in a photonic crystal waveguide (PCW). The slow light dispersions in PCWs are designed to match the emission wavelengths of single QDs. The resonance between two spin states emitted from a single QD and a slow light mode of a waveguide is investigated under a magnetic field with Faraday configuration. Two spin states of a single QD experience different degrees of enhancement as their emission wavelengths are shifted by combining diamagnetic and Zeeman effects with an optical excitation power control. A circular polarization degree up to 0.81 is achieved by changing the off-resonant excitation power. Strongly polarized photon emission enhanced by a slow light mode shows great potential to attain controllable spin-resolved photon sources for integrated optical quantum networks on chip.

9.
Comput Toxicol ; 252023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36909352

RESUMO

The need to analyze the complex relationships observed in high-throughput toxicogenomic and other omic platforms has resulted in an explosion of methodological advances in computational toxicology. However, advancements in the literature often outpace the development of software researchers can implement in their pipelines, and existing software is frequently based on pre-specified workflows built from well-vetted assumptions that may not be optimal for novel research questions. Accordingly, there is a need for a stable platform and open-source codebase attached to a programming language that allows users to program new algorithms. To fill this gap, the Biostatistics and Computational Biology Branch of the National Institute of Environmental Health Sciences, in cooperation with the National Toxicology Program (NTP) and US Environmental Protection Agency (EPA), developed ToxicR, an open-source R programming package. The ToxicR platform implements many of the standard analyses used by the NTP and EPA, including dose-response analyses for continuous and dichotomous data that employ Bayesian, maximum likelihood, and model averaging methods, as well as many standard tests the NTP uses in rodent toxicology and carcinogenicity studies, such as the poly-K and Jonckheere trend tests. ToxicR is built on the same codebase as current versions of the EPA's Benchmark Dose software and NTP's BMDExpress software but has increased flexibility because it directly accesses this software. To demonstrate ToxicR, we developed a custom workflow to illustrate its capabilities for analyzing toxicogenomic data. The unique features of ToxicR will allow researchers in other fields to add modules, increasing its functionality in the future.

10.
Int Wound J ; 20(7): 2718-2725, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36950772

RESUMO

The study aimed to assess the functional and aesthetic outcomes of abdominal full-thickness skin grafts (FTSGs) in paediatric postburn digital and palmar flexion contractures. The digital and palmar functions and aesthetics of 50 children who met the criteria were evaluated at pre-operation, the 3rd- and 12th-month post-operation, respectively. In the evaluation, the Vancouver Scar Scale (VSS), total active movement (TAM), and Jebsen-Taylor Hand Function Test (JHFT) were used. The contralateral, unaffected hand served as the criteria for functional recovery. The complications of donor sites were observed, and the take rate of skin grafts was calculated. The VSS scores at the 3rd and 12th months post-operation were lower than those before the operation. The TAM of each finger was improved at the 3rd and 12th months post-operation, compared with that before the operation. There was a significant difference in the time to complete the JHFT between the affected hand and the unaffected at the 3rd month post-operation, but no significant difference between them at the 12th month post-operation. The excellent and good take rate of the skin grafts was 90.00%.No donor site complications were observed. The abdominal FTSGs are effective in repairing paediatric digital and palmar scar contractures, with satisfying functional and aesthetic results, especially in large defects after scar release and resection.


Assuntos
Queimaduras , Contratura , Criança , Humanos , Transplante de Pele/métodos , Cicatriz/cirurgia , Cicatriz/complicações , Queimaduras/complicações , Queimaduras/cirurgia , Contratura/cirurgia , Contratura/complicações , Estética
11.
Nanomaterials (Basel) ; 12(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36500802

RESUMO

Pearlite is an important structure in carbon steel; however, the influence mechanism of carbides in pearlite on its mechanical properties and microstructure evolution has not yet been fully elucidated. In this work, a ferrite-carbide composite model with various carbide types was constructed to investigate the influence of carbide types via a uniaxial compression deformation using classical molecular dynamics simulations. It was found that the carbide type had little effect on the compressive elastic modulus, but a more obvious effect on the yield strain, yield stress, and flow stress. The maximum compressive elastic modulus was in the Fe2C model, with 300.32 GPa, while the minimum was found in the Fe4C model at 285.16 GPa; the error was 5.32%. There were significant differences in the yield stress, yield strain, and flow stress of the ferrite-carbide model according to the stress-strain curve. Secondly, the type of carbide used affected its elastic constant, especially the bulk modulus and Cauchy pressure. The maximum bulk modulus of the Fe4C model was 199.01 GPa, the minimum value of the Fe3C model was 146.03 GPa, and the difference was 52.98 GPa. The Cauchy pressure calculation results were consistent with the yield strain trend. Additionally, the effective elastic moduli of the composite system were used to verify the accuracy of the calculation results of this work. Thirdly, ferrite-carbide interfaces could act as a resource for dislocation emission. The initial stacking fault forms at ferrite-carbide interfaces and expands into ferrite. The dislocation type and segment in the ferrite-carbide model were significantly different due to the type of carbide used.

12.
Nanoscale ; 14(39): 14537-14543, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36185039

RESUMO

Single charge control of localized excitons (LXs) in two-dimensional transition metal dichalcogenides (TMDCs) is crucial for potential applications in quantum information processing and storage. However, traditional electrostatic doping method by applying metallic gates onto TMDCs may cause inhomogeneous charge distribution, optical quenching, and energy loss. Herein, by locally controlling the ferroelectric polarization of the ferroelectric thin film BiFeO3 (BFO) with a scanning probe, we can deterministically manipulate the doping type of monolayer WSe2 to achieve p-type and n-type doping. This nonvolatile approach can maintain the doping type and hold the localized excitonic charges for a long time without applied voltage. Our work demonstrated that the ferroelectric polarization of BFO can control the charges of LXs effectively. Neutral and charged LXs have been observed in different ferroelectric polarization regions, confirmed by magnetic optical measurement. Highly circular polarization degree with 90% photon emission from these quantum emitters was achieved in high magnetic fields. Controlling the single charge of LXs in a non-volatile way shows a great potential for deterministic photon emission with desired charge states for photonic long-term memory.

13.
Adv Sci (Weinh) ; 9(32): e2204247, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36104244

RESUMO

Advanced exfoliation techniques are crucial for exploring the intrinsic properties and applications of 2D materials. Though the recently discovered Au-enhanced exfoliation technique provides an effective strategy for the preparation of large-scale 2D crystals, the high cost of gold hinders this method from being widely adopted in industrial applications. In addition, direct Au contact could significantly quench photoluminescence (PL) emission in 2D semiconductors. It is therefore crucial to find alternative metals that can replace gold to achieve efficient exfoliation of 2D materials. Here, the authors present a one-step Ag-assisted method that can efficiently exfoliate many large-area 2D monolayers, where the yield ratio is comparable to Au-enhanced exfoliation method. Differing from Au film, however, the surface roughness of as-prepared Ag films on SiO2 /Si substrate is much higher, which facilitates the generation of surface plasmons resulting from the nanostructures formed on the rough Ag surface. More interestingly, the strong coupling between 2D semiconductor crystals (e.g., MoS2 , MoSe2 ) and Ag film leads to a unique PL enhancement that has not been observed in other mechanical exfoliation techniques, which can be mainly attributed to enhanced light-matter interaction as a result of extended propagation of surface plasmonic polariton (SPP). This work provides a lower-cost and universal Ag-assisted exfoliation method, while at the same time offering enhanced SPP-matter interactions.

14.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36077556

RESUMO

Long terminal repeat (LTR)-retrotransposons (LTR-RTs) comprise a major portion of many plant genomes and may exert a profound impact on genome structure, function, and evolution. Although many studies have focused on these elements in an individual species, their dynamics on a family level remains elusive. Here, we investigated the abundance, evolutionary dynamics, and impact on associated genes of LTR-RTs in 16 species in an economically important plant family, Cucurbitaceae. Results showed that full-length LTR-RT numbers and LTR-RT content varied greatly among different species, and they were highly correlated with genome size. Most of the full-length LTR-RTs were amplified after the speciation event, reflecting the ongoing rapid evolution of these genomes. LTR-RTs highly contributed to genome size variation via species-specific distinct proliferations. The Angela and Tekay lineages with a greater evolutionary age were amplified in Trichosanthes anguina, whereas a recent activity burst of Reina and another ancient round of Tekay activity burst were examined in Sechium edule. In addition, Tekay and Retand lineages belonging to the Gypsy superfamily underwent a recent burst in Gynostemma pentaphyllum. Detailed investigation of genes with intronic and promoter LTR-RT insertion showed diverse functions, but the term of metabolism was enriched in most species. Further gene expression analysis in G.pentaphyllum revealed that the LTR-RTs within introns suppress the corresponding gene expression, whereas the LTR-RTs within promoters exert a complex influence on the downstream gene expression, with the main function of promoting gene expression. This study provides novel insights into the organization, evolution, and function of LTR-RTs in Cucurbitaceae genomes.


Assuntos
Evolução Molecular , Retroelementos , Tamanho do Genoma , Genoma de Planta , Filogenia , Retroelementos/genética , Sequências Repetidas Terminais/genética
15.
Nano Lett ; 22(6): 2177-2186, 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35239344

RESUMO

Strong exciton-plasmon interactions between layered two-dimensional (2D) semiconductors and gap plasmons show a great potential to implement cavity quantum electrodynamics under ambient conditions. However, achieving a robust plasmon-exciton coupling with nanocavities is still very challenging, because the layer area is usually small in the conventional approaches. Here, we report on a robust strong exciton-plasmon coupling between the gap mode of a bowtie and the excitons in MoS2 layers with gold-assisted mechanical exfoliation and nondestructive wet transfer techniques for a large-area layer. Due to the ultrasmall mode volume and strong in-plane field, the estimated effective exciton number contributing to the coupling is largely reduced. With a corrected exciton transition dipole moment, the exciton numbers are extracted as being 40 for the case of a single layer and 48 for eight layers. Our work paves the way to realize strong coupling with 2D materials with a small number of excitons at room temperature.

16.
Stem Cells Int ; 2022: 5474289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591374

RESUMO

Background: Early multiple organ injuries induced by severe burn predict a high mortality. Mesenchymal stem cells (MSCs) are able to repair and reconstruct the injured tissues and organs induced by trauma and diseases. However, potential protective effect and mechanism of MSCs on multiorgan injury induced by severe burn at early stage remain to be not clarified. Therefore, this study was to explore the effect and mechanism of human umbilical cord-derived MSCs (hUCMSCs) against severe burn-induced early organ injuries in rats. Methods: Adult male Wistar rats were randomly divided into sham, burn, and burn+hUCMSCsgroups. GFP-labeled hUCMSCs or PBS was intravenous injected into respective groups. Migration and distribution patterns of GFP-labeled hUCMSCs were observed by inverted fluorescence microscope. The structures and cell apoptosis of the heart, kidney, and liver were measured by immunohistochemistry. Biochemical parameters in serum were assayed by standard Roche-Hitachi methodology. Western blotting was performed on these organs of rats in the three groups to explore the underlying mechanisms. Results: At 24 hours after hUCMSCs transplantation, we found that GFP-labeled hUCMSCs mainly localized in the blood vessel of the heart, kidney, and liver and a very few cells migrated into tissues of these organs. Compared with the sham group, structure damages and cell apoptosis of these organs were induced by severe burn, and systematic administrations of hUCMSCs significantly improved the damaged structures, cell apoptosis rates, and biochemical parameters of these organs. Furthermore, IGF-1 (insulin-like growth factor 1) level in burn+hUCMSCs group was significantly higher than that in the sham and burn groups. Meanwhile, severe burn induced BCL-2/BAX significantly decreased compared to the sham group, and it was markedly increased by hUCMSCs administration. Conclusion: The hUCMSCs transplantation can attenuate severe burn-induced early organ injuries and protect multiorgan functions by encouraging migration of hUCMSCs with blood circulation and increasing protective cytokine IGF-1 level and regulating BCL-2/BAX pathway of these vital organs. Furthermore, these data might provide the theoretical foundation for further clinical applications of hUCMSCs in burn areas.

17.
Opt Express ; 29(10): 14231-14244, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33985147

RESUMO

We report on controllable cavity modes by controlling the backscattering by two identical scatterers. Periodic changes of the backscattering coupling between two degenerate cavity modes are observed with the changing angle between two scatterers and elucidated by a theoretical model using two-mode approximation and numerical simulations. The periodically appearing single-peak cavity modes indicate mode degeneracy at diabolical points. Interactions between single quantum dots and cavity modes are then investigated. Enhanced emission of a quantum dot with a six-fold intensity increase is obtained in a microdisk at a diabolical point. This method to control cavity modes allows large-scale integration, high reproducibility and flexible design of the size, the location, the quantity and the shape for scatterers, which can be applied for integrated photonic structures with scatterer-modified light-matter interaction.

18.
ACS Omega ; 5(49): 31716-31723, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33344824

RESUMO

The bright spot phenomenon during the gas explosion was because of the soot particles of high heat radiation characteristics generated during the explosion process. The formation mechanism of soot and precursor polycyclic aromatic hydrocarbons (PAHs) of the methane explosion was numerically simulated using CHEMKIN-PRO. The methane explosion soot of the CH4-air premixed gas explosion experiments with volume concentrations of 8% was collected, and the pore size distribution and surface structure of the soot were analyzed by low-pressure nitrogen gas adsorption (LP-N2GA), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results show that C2 and C3 play an important role in the formation of PAHs in the early stage of the explosion reaction. The LP-N2GA isotherms demonstrate that the pore type of the soot particles is mostly wedge-shaped, which was verified with SEM observations. The SEM analysis showed that the methane explosion soot is composed of a large number of spherical soot aggregates with diameters between 4 and 50 µm and the pores at the particle surface are well developed, some of the particles exhibit a melt sintering feature. Soot aggregates collide with each other with a chain-branched structure, and the diameters of the majority of the particles are of 100 nm according to TEM images. In addition, graphite-like lattice stripes can be clearly seen inside the particles when magnified to 8 nm. This work will provide the basis for further analysis of soot formation in the gas explosion process.

19.
iScience ; 23(8): 101383, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32745988

RESUMO

Vascular endothelium dysfunction plays a pivotal role in the initiation and progression of multiple organ dysfunction. The mesenchymal stem cell (MSC) maintains vascular endothelial barrier survival via secreting bioactive factors. However, the mechanism of human umbilical cord MSC (hMSC) in protecting endothelial survival remains unclear. Here, we found IGF-1 secreted by hMSC suppressed severe burn-induced apoptosis of human umbilical vein endothelial cells (HUVECs) and alleviated the dysfunction of vascular endothelial barrier and multiple organs in severely burned rats. Severe burn repressed miR-301a-3p expression, which directly regulated IGF-1 synthesis and secretion in hMSC. Down-regulation of miR-301a-3p decreased HUVECs apoptosis, stabilized endothelial barrier permeability, and subsequently protected against multiple organ dysfunction in vivo. Additionally, miR-301a-3p negatively regulated PI3K/Akt/FOXO3 signaling through IGF-1. Taken together, our study highlights the protective function of IGF-1 against the dysfunction of multiple organs negatively regulated by miR-301a-3p, which may provide the theoretical foundation for further clinical application of hMSC.

20.
Materials (Basel) ; 13(7)2020 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-32218242

RESUMO

18Ni(300) maraging steel, which has exceptional strength and toughness, is used in the field of aviation and aerospace. In this paper, using a high-speed tribo-tester, tribological behaviors of 18Ni(300) maraging steel were investigated under high-speed dry sliding conditions. Morphology of the worn surfaces and the debris was analyzed by scanning electron microscope, and the oxides of worn surfaces caused by friction heat were detected by X-ray diffraction. The experiment results reveal that the friction coefficient of frictional pairs declines with increasing load and speed. With the speed and load increasing, oxides of the worn surfaces of 18Ni(300) maraging steel change from FeO to Fe3O4 and the wear mechanism converts from adhesive wear into severe oxidative or extrusion wear.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...