Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 179: 182-191, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38479257

RESUMO

This study proposed an innovative strategy of catalytic cracking of tar during biomass pyrolysis/gasification using furfural residue derived biochar-based catalysts. Fe, Co, and Ni modified furfural residue char (FRC-Fe, FRC-Co, and FRC-Ni) were prepared by one-step impregnation method. The influences of cracking temperature and metal species on the tar cracking characteristics were investigated. The results showed that the tar conversion efficiency for all catalysts were improved with the cracking temperature increasing, the higher tar conversion efficiency achieved at 800 °C were 66.72 %, 89.58 %, 84.58 %, and 94.70 % for FRC, FRC-Fe, FRC-Co, and FRC-Ni respectively. FRC-Ni achieved the higher gas (H2, CO, CH4, CO2) yield 681.81 mL/g. At 800 °C, the catalyst (FRC-Ni) still reached a high tar conversion efficiency over 85.90 % after 5 cycles. SEM-EDS results showed that the distribution of Ni particles on the biochar support was uniform. TGA results demonstrated that FRC-Ni exhibited better thermal stability. XRD results indicated that there was no significant change in the grain size of Ni before and after the reaction. The FRC-Ni catalyst was reasonably stable due to its better anti-sintering and coke-resistant capabilities.


Assuntos
Carvão Vegetal , Furaldeído , Gases , Biomassa , Metais , Catálise
2.
Mol Cancer Ther ; 23(5): 606-618, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38354417

RESUMO

In recent years, the field of antibody drug conjugates (ADC) has seen a resurgence, largely driven by the clinical benefit observed in patients treated with ADCs incorporating camptothecin-based topoisomerase I inhibitor payloads. Herein, we present the development of a novel camptothecin ZD06519 (FD1), which has been specifically designed for its application as an ADC payload. A panel of camptothecin analogs with different substituents at the C-7 and C-10 positions of the camptothecin core was prepared and tested in vitro. Selected compounds spanning a range of potency and hydrophilicity were elaborated into drug-linkers, conjugated to trastuzumab, and evaluated in vitro and in vivo. ZD06519 was selected on the basis of its favorable properties as a free molecule and as an antibody conjugate, which include moderate free payload potency (∼1 nmol/L), low hydrophobicity, strong bystander activity, robust plasma stability, and high-monomeric ADC content. When conjugated to different antibodies using a clinically validated MC-GGFG-based linker, ZD06519 demonstrated impressive efficacy in multiple cell line-derived xenograft models and noteworthy tolerability in healthy mice, rats, and non-human primates.


Assuntos
Camptotecina , Imunoconjugados , Ensaios Antitumorais Modelo de Xenoenxerto , Camptotecina/farmacologia , Camptotecina/química , Imunoconjugados/farmacologia , Imunoconjugados/química , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Desenho de Fármacos , Feminino , Ratos
3.
Mol Genet Genomics ; 299(1): 19, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416229

RESUMO

KEY MESSAGE: GaKAN2, a member of the KANADI family, was found to be widely expressed in the cotton tissues and regulates trichome development through complex pathways. Cotton trichomes are believed to be the defense barrier against insect pests. Cotton fiber and trichomes are single-cell epidermal extensions with shared regulatory mechanisms. Despite several studies underlying mechanism of trichome development remains elusive. The KANADI is one of the key transcription factors (TFs) family, regulating Arabidopsis trichomes growth. However, the function of KANADI genes in cotton remains unknown. In the current study genome-wide scanning, transcriptomic analysis, gene silencing, subcellular localization, and yeast two-hybrid techniques were employed to decipher the function of KANADI TFs family genes in cotton crop. A total of 7 GaKAN genes were found in the Gossypium arboreum. Transcriptomic data revealed that these genes were significantly expressed in stem and root. Moreover, GaKAN2 was widely expressed in other tissues also. Subsequently, we selected GaKAN2 to validate the function of KANADI genes. Silencing of GaKAN2 resulted in a 24.99% decrease in single-cell trichomes and an 11.33% reduction in internodal distance, indicating its potential role in regulating trichomes and plant growth. RNA-Seq analysis elucidated that GaSuS and GaERS were the downstream genes of GaKAN2. The transcriptional activation and similarity in silencing phenotype between GaKAN2 and GaERS suggested that GaKAN2 regulates trichomes development through GaERS. Moreover, KEGG analysis revealed that a significant number of genes were enriched in the biosynthesis of secondary metabolites and plant hormone signal transduction pathways, thereby suggesting that GaKAN2 regulates the stem trichomes and plant growth. The GFP subcellular localization and yeast transcriptional activation analysis elucidated that GaKAN2 was located in the nucleus and capable of regulating the transcription of downstream genes. This study elucidated the function and characteristics of the KANADI gene family in cotton, providing a fundamental basis for further research on GaKAN2 gene in cotton plant trichomes and plant developmental processes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fatores de Transcrição/genética , Gossypium/genética , Tricomas/genética , Saccharomyces cerevisiae , Regulação da Expressão Gênica
4.
Kidney Int ; 104(1): 139-150, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37001603

RESUMO

Kidney cholesterol crystal embolism (CCE) occurs in advanced atherosclerosis and induces a thrombotic (micro)angiopathy, a drop in the glomerular filtration rate (GFR), and an ischemic kidney infarction with necroinflammation. We speculated that common metabolic comorbidities such as diabetes or hyperuricemia would independently modulate each of these distinct pathophysiological processes. To test this, experimental CCE was induced by injecting cholesterol crystals into the left kidney artery of mice and thrombotic angiopathy, GFR drop, and infarct size were analyzed after 24 hours in the presence of hyperglycemia (about 500 mg/dL) or hyperuricemia (about 8 mg/dL) or their absence. In healthy mice, unilateral CCE caused diffuse thrombotic angiopathy in interlobar, arcuate and interlobular arteries, followed by a 50% or less drop in GFR compared to baseline and a variable degree of ischemic kidney necrosis. Hyperglycemia but not hyperuricemia aggravated thrombotic angiopathy although both caused a GFR decline, albeit via different mechanisms. Hyperglycemia aggravated GFR loss by increasing necroinflammation and infarct size, while the antioxidative effects of hyperuricemia reasonably attenuated necroinflammation and infarct size but induced a diffuse vasoconstriction in affected and unaffected kidney tissue. Thus, both hyperglycemia or hyperuricemia aggravate CCE-induced acute kidney failure despite having opposite effects on ischemic necroinflammation and infarction.


Assuntos
Injúria Renal Aguda , Embolia de Colesterol , Hiperglicemia , Hiperuricemia , Humanos , Rim , Hiperuricemia/complicações , Hiperglicemia/complicações , Injúria Renal Aguda/etiologia , Embolia de Colesterol/complicações , Isquemia , Taxa de Filtração Glomerular , Colesterol , Infarto/etiologia
5.
Nephrol Dial Transplant ; 38(1): 93-105, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36102665

RESUMO

BACKGROUND: Cholesterol crystal (CC) embolism causes acute kidney injury (AKI) and ischaemic cortical necrosis associated with high mortality. We speculated that sustaining the fibrinolytic system with Glu-plasminogen (Glu-Plg) could be a safe way to attenuate AKI and prevent ischaemic infarction upon CC embolism. METHODS: We induced CC embolism by injecting CC into the left kidney artery of C57BL/6J mice. The primary endpoint was glomerular filtration rate (GFR). RESULTS: Starting as early as 2 h after CC embolism, thrombotic angiopathy progressed gradually in the interlobular, arcuate and interlobar arteries. This was associated with a decrease of GFR reaching a peak at 18 h, i.e. AKI, and progressive ischaemic kidney necrosis developing between 12-48 h after CC injection. Human plasma Glu-Plg extracts injected intravenously 4 h after CC embolism attenuated thrombotic angiopathy, GFR loss as well as ischaemic necrosis in a dose-dependent manner. No bleeding complications occurred after Glu-Plg injection. Injection of an intermediate dose (0.6 mg/kg) had only a transient protective effect on microvascular occlusions lasting for a few hours without a sustained protective effect on AKI at 18-48 h or cortical necrosis, while 1.5 mg/kg were fully protective. Importantly, no bleeding complications occurred. CONCLUSIONS: These results provide the first experimental evidence that Glu-Plg could be an innovative therapeutic strategy to attenuate thrombotic angiopathy, AKI, kidney necrosis and potentially other clinical manifestations of CC embolism syndrome.


Assuntos
Injúria Renal Aguda , Embolia , Trombose , Humanos , Camundongos , Animais , Plasminogênio , Camundongos Endogâmicos C57BL , Rim , Infarto , Colesterol , Necrose
6.
Sci Rep ; 12(1): 21876, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36536046

RESUMO

It is difficult to measure the surface temperature of continuous casting billet, which results in the lack of important feedback parameters for further scientific control of the billet quality. This paper proposes a sparrow search algorithm to optimize the Least Square Support Vector Machine (LSSVM) model for surface temperature prediction of the billet, which is further improved by Logistic Chaotic Mapping and Golden Sine Algorithm (Improve Logistic Golden Sine Sparrow Search Algorithm LSSVM, short name ILGSSA-LSSVM). Using the Improved Logistic Chaos Mapping and Golden Sine Algorithm to find the optimal initial sparrow population, the value of penalty factor [Formula: see text] and kernel parameter [Formula: see text] for LSSVM are calculated. Global optimization method is adopted to find the optimal parameter combination, so that the negative influence of randomly initializing parameters on the prediction accuracy would be reduced. Our proposed ILGSSA-LSSVM soft sensing model is compared respectively with traditional Least Square Support Vector Machine, BP neural network and Gray Wolf optimized Least Square Support Vector Machine, results show that proposed model outperformed the others. Experiments show that the maximum error of ILGSA-LSSVM soft sensing model is 3.85733 °C, minimum error is 0.0174 °C, average error is 0.05805 °C, and generally outperformed other comparison models.


Assuntos
Redes Neurais de Computação , Máquina de Vetores de Suporte , Análise dos Mínimos Quadrados , Temperatura , Algoritmos
7.
Artigo em Inglês | MEDLINE | ID: mdl-36429680

RESUMO

To provide scientific basis for the prevention and control of heavy metal pollution, a field investigation, sample collection and analysis of the heavy metal content in farmland soils at the northern foot of the Qinling Mountains were conducted. Based on the comparative analysis of the single pollution index method, the Nemerow comprehensive pollution index method, the geological accumulation index method, the potential ecological hazard index method, and the geological accumulation index method were used to comprehensively analyze and evaluate the risk of soil heavy metal pollution. The results showed that the heavy metal pollution of farmland soil at the northern foot of the Qinling Mountains was severe, among which Hg and Cr pollution was relatively obvious. Taking the soil screening values of agricultural land as the standard, the quantity of element Hg in agricultural soils at the northern foot of the Qinling Mountains was higher than the relevant screening value. In the two sample sites investigated, the intensity of the heavy metal accumulation index in Baoqizhai Village was Hg > Cr > Cu > As > Pb, and in Dayangyu Village it was Cr > Cu > As > Pb. Among them, in Baoqizhai Village it shows the heavy pollution caused by Hg (Igeo= 3.42) and the light pollution caused by Cr (Igeo < 1) in the two areas. Hg is mostly affected by mining activities and its atmospheric subsidence. At the same time, Cr is mainly derived from the weathering of rock parent material and is also affected by anthropogenic factors to a certain extent. The accumulation of heavy metals in the farmland soil around the northern foot of the Qinling Mountains was relatively high, posing a threat to the surrounding soil environment. Therefore, it is urgent to control farmland soil environmental pollution.


Assuntos
Mercúrio , Metais Pesados , Poluentes do Solo , Solo , Fazendas , Poluentes do Solo/análise , Chumbo/análise , Monitoramento Ambiental , Metais Pesados/análise , Poluição Ambiental/análise , Medição de Risco , China , Mercúrio/análise
8.
Front Cardiovasc Med ; 9: 974759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966530

RESUMO

Cholesterol crystal (CC) embolism can cause acute tissue infarction and ischemic necrosis via triggering diffuse thrombotic angiopathy occluding arterioles and arteries. Neutrophils contribute to crystal-induced immunothrombosis as well as to ischemic necrosis-related necroinflammation. We speculated that CC embolism-induced acute kidney injury (AKI) would be circadian rhythm-dependent and associated with cyclic differences in neutrophil function. Injection of CC into the left kidney induced thrombotic angiopathy progressing starting as early as 3 h after CC injection followed by a progressive ischemic cortical necrosis and AKI at 24 h. In C57BL/6J mice, circulating CD11b+Ly6G+ neutrophils were higher during the day phase [Zeitgeber time (ZT) 0-12] compared to the dark phase (ZT12-24). In the time frame of thrombus formation at ZT13, more neutrophils were recruited into the injured kidney 24 h later compared to CC embolism at ZT5. This effect was associated with an increased circulating number of CXCR2+ neutrophils as well as an upregulated kidney adhesion molecule and chemokine expression. These findings were associated with a significant increase in kidney necrosis, and endothelial injury at ZT13. Thus, the time of day has an effect also on CC embolism-related AKI in association with the circadian rhythm of neutrophil recruitment.

9.
Pharmacology ; 107(5-6): 281-289, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35325888

RESUMO

AIM: Recent evidence indicates that neuroinflammation and oxidative stress play vital roles in the pathological process of major depressive disorder (MDD). Cinnamic acid (CA), a naturally occurring organic acid, has been reported to ameliorate neuroinflammation and oxidative stress for treatment of diabetes-related memory deficits. Here, we explored whether CA pretreatment ameliorated lipopolysaccharide (LPS)-induced depressive-like behaviors in mice by suppressing neuroinflammation and by improving oxidative stress status. METHODS: The mice were treated with CA, vehicle, or fluoxetine as a positive control. After 14 days, LPS (1 mg/kg, i.p.) or saline was administered. The depression-like behaviors were examined by the sucrose preference test (SPT), the forced swimming test (FST), and the tail suspension test (TST). Furthermore, the levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), and brain-derived neurotrophic factor (BDNF) in the hippocampus and cortex of mice were assayed. RESULTS: Our results demonstrated that CA pretreatment at the doses of 100 and 200 mg/kg significantly attenuated depressive-like behaviors in the TST, FST, and SPT. In addition, not only the upregulation of pro-inflammatory cytokines (IL-6 and TNF-α) but also oxidative stress parameters including SOD, GSH, and MDA in the hippocampus and cortex of mice treated with LPS were dramatically improved by CA pretreatment. Finally, CA pretreatment strikingly ameliorated the downregulation of BDNF induced by LPS in the hippocampus and cortex of mice. CONCLUSION: Our results indicated that CA may have therapeutic potential for MDD treatment through attenuating the LPS-induced inflammation and oxidative stress along with significant improvement of BDNF impairment.


Assuntos
Transtorno Depressivo Maior , Lipopolissacarídeos , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Cinamatos , Depressão/induzido quimicamente , Depressão/tratamento farmacológico , Glutationa/metabolismo , Hipocampo/metabolismo , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Doenças Neuroinflamatórias , Estresse Oxidativo , Superóxido Dismutase , Fator de Necrose Tumoral alfa/metabolismo
10.
Life (Basel) ; 11(5)2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33946784

RESUMO

The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1 have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk between the two metabolic pathways and raising fundamental questions about their assembly. Here we reviewed the recent findings and advances in understanding of protein-protein interactions in OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function and regulation.

11.
Front Immunol ; 11: 568513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33117353

RESUMO

Clotting and inflammation are effective danger response patterns positively selected by evolution to limit fatal bleeding and pathogen invasion upon traumatic injuries. As a trade-off, thrombotic, and thromboembolic events complicate severe forms of infectious and non-infectious states of acute and chronic inflammation, i.e., immunothrombosis. Factors linked to thrombosis and inflammation include mediators released by platelet granules, complement, and lipid mediators and certain integrins. Extracellular deoxyribonucleic acid (DNA) was a previously unrecognized cellular component in the blood, which elicits profound proinflammatory and prothrombotic effects. Pathogens trigger the release of extracellular DNA together with other pathogen-associated molecular patterns. Dying cells in the inflamed or infected tissue release extracellular DNA together with other danger associated molecular pattern (DAMPs). Neutrophils release DNA by forming neutrophil extracellular traps (NETs) during infection, trauma or other forms of vascular injury. Fluorescence tissue imaging localized extracellular DNA to sites of injury and to intravascular thrombi. Functional studies using deoxyribonuclease (DNase)-deficient mouse strains or recombinant DNase show that extracellular DNA contributes to the process of immunothrombosis. Here, we review rodent models of immunothrombosis and the evolving evidence for extracellular DNA as a driver of immunothrombosis and discuss challenges and prospects for extracellular DNA as a potential therapeutic target.


Assuntos
DNA , Trombose/genética , Animais , Humanos , Inflamação/genética , Inflamação/imunologia , Trombose/imunologia
12.
Circ Res ; 126(8): e37-e52, 2020 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-32089086

RESUMO

RATIONALE: Cholesterol crystal embolism can be a life-threatening complication of advanced atherosclerosis. Pathophysiology and molecular targets for treatment are largely unknown. OBJECTIVE: We aimed to develop a new animal model of cholesterol crystal embolism to dissect the molecular mechanisms of cholesterol crystal (CC)-driven arterial occlusion, tissue infarction, and organ failure. METHODS AND RESULTS: C57BL/6J mice were injected with CC into the left kidney artery. Primary end point was glomerular filtration rate (GFR). CC caused crystal clots occluding intrarenal arteries and a dose-dependent drop in GFR, followed by GFR recovery within 4 weeks, that is, acute kidney disease. In contrast, the extent of kidney infarction was more variable. Blocking necroptosis using mixed lineage kinase domain-like deficient mice or necrostatin-1s treatment protected from kidney infarction but not from GFR loss because arterial obstructions persisted, identifying crystal clots as a primary target to prevent organ failure. CC involved platelets, neutrophils, fibrin, and extracellular DNA. Neutrophil depletion or inhibition of the release of neutrophil extracellular traps had little effects, but platelet P2Y12 receptor antagonism with clopidogrel, fibrinolysis with urokinase, or DNA digestion with recombinant DNase I all prevented arterial occlusions, GFR loss, and kidney infarction. The window-of-opportunity was <3 hours after CC injection. However, combining Nec-1s (necrostatin-1s) prophylaxis given 1 hour before and DNase I 3 hours after CC injection completely prevented kidney failure and infarcts. In vitro, CC did not directly induce plasmatic coagulation but induced neutrophil extracellular trap formation and DNA release mainly from kidney endothelial cells, neutrophils, and few from platelets. CC induced ATP release from aggregating platelets, which increased fibrin formation in a DNase-dependent manner. CONCLUSIONS: CC embolism causes arterial obstructions and organ failure via the formation of crystal clots with fibrin, platelets, and extracellular DNA as critical components. Therefore, our model enables to unravel the pathogenesis of the CC embolism syndrome as a basis for both prophylaxis and targeted therapy.


Assuntos
Colesterol/toxicidade , Embolia de Colesterol/patologia , Rim/irrigação sanguínea , Rim/patologia , Insuficiência Renal/patologia , Animais , Embolia de Colesterol/induzido quimicamente , Células Endoteliais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Insuficiência Renal/induzido quimicamente
13.
J Biol Chem ; 293(50): 19213-19227, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30323066

RESUMO

The human 2-oxoglutaric acid dehydrogenase complex (hOGDHc) plays a pivotal role in the tricarboxylic acid (TCA) cycle, and its diminished activity is associated with neurodegenerative diseases. The hOGDHc comprises three components, hE1o, hE2o, and hE3, and we recently reported functionally active E1o and E2o components, enabling studies on their assembly. No atomic-resolution structure for the hE2o component is currently available, so here we first studied the interactions in the binary subcomplexes (hE1o-hE2o, hE1o-hE3, and hE2o-hE3) to gain insight into the strength of their interactions and to identify the interaction loci in them. We carried out multiple physico-chemical studies, including fluorescence, hydrogen-deuterium exchange MS (HDX-MS), and chemical cross-linking MS (CL-MS). Our fluorescence studies suggested a strong interaction for the hE1o-hE2o subcomplex, but a much weaker interaction in the hE1o-hE3 subcomplex, and failed to identify any interaction in the hE2o-hE3 subcomplex. The HDX-MS studies gave evidence for interactions in the hE1o-hE2o and hE1o-hE3 subcomplexes comprising full-length components, identifying: (i) the N-terminal region of hE1o, in particular the two peptides 18YVEEM22 and 27ENPKSVHKSWDIF39 as constituting the binding region responsible for the assembly of the hE1o with both the hE2o and hE3 components into hOGDHc, an hE1 region absent in available X-ray structures; and (ii) a novel hE2o region comprising residues from both a linker region and from the catalytic domain as being a critical region interacting with hE1o. The CL-MS identified the loci in the hE1o and hE2o components interacting with each other.


Assuntos
Complexo Cetoglutarato Desidrogenase/metabolismo , Mapeamento de Interação de Proteínas/métodos , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Complexo Cetoglutarato Desidrogenase/química , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica em alfa-Hélice
14.
Biochim Biophys Acta Bioenerg ; 1859(9): 932-939, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29752936

RESUMO

Herein are reported findings in vitro suggesting both functional and regulatory cross-talk between the human 2-oxoglutarate dehydrogenase complex (hOGDHc), a key regulatory enzyme within the tricarboxylic acid cycle (TCA cycle), and a novel 2-oxoadipate dehydrogenase complex (hOADHc) from the final degradation pathway of l-lysine, l-hydroxylysine and l-tryptophan. The following could be concluded from our studies by using hOGDHc and hOADHc assembled from their individually expressed components in vitro: (i) Different substrate preferences (kcat/Km) were displayed by the two complexes even though they share the same dihydrolipoyl succinyltransferase (hE2o) and dihydrolipoyl dehydrogenase (hE3) components; (ii) Different binding modes were in evidence for the binary hE1o-hE2o and hE1a-hE2o subcomplexes according to fluorescence titrations using site-specifically labeled hE2o-derived proteins; (iii) Similarly to hE1o, the hE1a also forms the ThDP-enamine radical from 2-oxoadipate (electron paramagnetic resonance detection) in the oxidative half reaction; (iv) Both complexes produced superoxide/H2O2 from O2 in the reductive half reaction suggesting that hE1o, and hE1a (within their complexes) could both be sources of reactive oxygen species generation in mitochondria from 2-oxoglutarate and 2-oxoadipate, respectively; (v) Based on our findings, we speculate that hE2o can serve as a trans-glutarylase, in addition to being a trans-succinylase, a role suggested by others; (vi) The glutaryl-CoA produced by hOADHc inhibits hE1o, as does succinyl-CoA, suggesting a regulatory cross-talk between the two complexes on the different metabolic pathways.


Assuntos
Adipatos/metabolismo , Ciclo do Ácido Cítrico , Hidroxilisina/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Lisina/metabolismo , Triptofano/metabolismo , Humanos , Técnicas In Vitro
15.
Free Radic Biol Med ; 115: 136-145, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191460

RESUMO

Herein are reported unique properties of the novel human thiamin diphosphate (ThDP)-dependent enzyme 2-oxoadipate dehydrogenase (hE1a), known as dehydrogenase E1 and transketolase domain-containing protein 1 that is encoded by the DHTKD1 gene. It is involved in the oxidative decarboxylation of 2-oxoadipate (OA) to glutaryl-CoA on the final degradative pathway of L-lysine and is critical for mitochondrial metabolism. Functionally active recombinant hE1a has been produced according to both kinetic and spectroscopic criteria in our toolbox leading to the following conclusions: (i) The hE1a has recruited the dihydrolipoyl succinyltransferase (hE2o) and the dihydrolipoyl dehydrogenase (hE3) components of the tricarboxylic acid cycle 2-oxoglutarate dehydrogenase complex (OGDHc) for its activity. (ii) 2-Oxoglutarate (OG) and 2-oxoadipate (OA) could be oxidized by hE1a, however, hE1a displays an approximately 49-fold preference in catalytic efficiency for OA over OG, indicating that hE1a is specific to the 2-oxoadipate dehydrogenase complex. (iii) The hE1a forms the ThDP-enamine radical from OA according to electron paramagnetic resonance detection in the oxidative half reaction, and could produce superoxide and H2O2 from decarboxylation of OA in the forward physiological direction, as also seen with the 2-oxoglutarate dehydrogenase hE1o component. (iv) Once assembled to complex with the same hE2o and hE3 components, the hE1o and hE1a display strikingly different regulation: both succinyl-CoA and glutaryl-CoA significantly reduced the hE1o activity, but not the activity of hE1a.


Assuntos
Adipatos/metabolismo , Complexo Cetoglutarato Desidrogenase/metabolismo , Ácidos Cetoglutáricos/metabolismo , Mitocôndrias/metabolismo , Oxirredutases/metabolismo , Acil Coenzima A/metabolismo , Adipatos/química , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Metabolismo Energético , Humanos , Complexo Cetoglutarato Desidrogenase/química , Ácidos Cetoglutáricos/química , Cetona Oxirredutases/genética , Cetona Oxirredutases/metabolismo , Oxirredução , Oxirredutases/química , Domínios Proteicos/genética , Espécies Reativas de Oxigênio/metabolismo
16.
Proc Natl Acad Sci U S A ; 114(35): 9355-9360, 2017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28808005

RESUMO

The enzyme 1-deoxy-d-xylulose 5-phosphate synthase (DXPS) is a key enzyme in the methylerythritol 4-phosphate pathway and is a target for the development of antibiotics, herbicides, and antimalarial drugs. DXPS catalyzes the formation of 1-deoxy-d-xylulose 5-phosphate (DXP), a branch point metabolite in isoprenoid biosynthesis, and is also used in the biosynthesis of thiamin (vitamin B1) and pyridoxal (vitamin B6). Previously, we found that DXPS is unique among the superfamily of thiamin diphosphate (ThDP)-dependent enzymes in stabilizing the predecarboxylation intermediate, C2-alpha-lactyl-thiamin diphosphate (LThDP), which has subsequent decarboxylation that is triggered by d-glyceraldehyde 3-phosphate (GAP). Herein, we applied hydrogen-deuterium (H/D) exchange MS (HDX-MS) of full-length Escherichia coli DXPS to provide a snapshot of the conformational dynamics of this enzyme, leading to the following conclusions. (i) The high sequence coverage of DXPS allowed us to monitor structural changes throughout the entire enzyme, including two segments (spanning residues 183-238 and 292-317) not observed by X-ray crystallography. (ii) Three regions of DXPS (spanning residues 42-58, 183-199, and 278-298) near the active center displayed both EX1 (monomolecular) and EX2 (bimolecuar) H/D exchange (HDX) kinetic behavior in both ligand-free and ligand-bound states. All other peptides behaved according to the common EX2 kinetic mechanism. (iii) The observation of conformational changes on DXPS provides support for the role of conformational dynamics in the DXPS mechanism: The closed conformation of DXPS is critical for stabilization of LThDP, whereas addition of GAP converts DXPS to the open conformation that coincides with decarboxylation of LThDP and DXP release.


Assuntos
Espectrometria de Massas/métodos , Transferases/metabolismo , Gliceraldeído 3-Fosfato/química , Gliceraldeído 3-Fosfato/metabolismo , Modelos Moleculares , Pentosefosfatos/química , Pentosefosfatos/metabolismo , Ácido Fosfonoacéticos/análogos & derivados , Ácido Fosfonoacéticos/química , Ácido Fosfonoacéticos/metabolismo , Ligação Proteica , Conformação Proteica
17.
Sci Rep ; 7: 42760, 2017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230160

RESUMO

The human pyruvate dehydrogenase complex (PDC) comprises four multidomain components, E1, E3, E2 and an E3-binding protein (E3BP), the latter two forming the core as E2·E3BP sub-complex. Pyruvate flux through PDC is regulated via phosphorylation (inactivation) at E1 by four PDC kinases (PDKs), and reactivation by two PDC phosphatases. Up-regulation of PDK isoform gene expression is reported in several forms of cancer, while PDKs may be further activated by PDC by binding to the E2·E3BP core. Hence, the PDK: E2·E3BP interaction provides new therapeutic targets. We carried out both functional kinetic and thermodynamic studies to demonstrate significant differences in the activation of PDK isoforms by binding to the E2·E3BP core: (i) PDK2 needs no activation by E2·E3BP for efficient functioning, while PDK4 was the least effective of the four isoforms, and could not be activated by E2·E3BP. Hence, development of inhibitors to the interaction of PDK2 and PDK4 with E2·E3BP is not promising; (ii) Design of inhibitors to interfere with interaction of E2·E3BP with PDK1 and PDK3 is promising. PDK3 needs E2·E3BP core for activation, an activation best achieved by synergistic combination of E2-derived catalytic domain and tridomain.


Assuntos
Proteínas Serina-Treonina Quinases/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Domínio Catalítico , Humanos , Isoenzimas/antagonistas & inibidores , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Piruvato Desidrogenase Quinase de Transferência de Acetil , Termodinâmica
18.
Breast Cancer Res Treat ; 99(1): 63-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16541316

RESUMO

BACKGROUND: We previously found a higher incidence of circulating tumour cells (CTCs) in women with metastatic breast cancer compared to early disease. In this study, we present follow-up data to explore the prognostic significance of these findings. METHODS: CTCs were quantified by immunostaining and direct visualization after centrifugation and filtration enrichment of peripheral blood from 131 patients. Time to progression (TTP) and overall survival (OS) were defined as interval from first blood sampling to first documented disease progression, or death respectively. Lifetime data was analysed using Kaplan-Meier method, log-rank test and Cox proportional hazards model. RESULTS: Follow-up data is available for 123 patients. In early disease, median CTC>or=4 best distinguished patients with shorter TTP (p=0.05, log-rank test). In univariate analysis, tumour size, grade, lymphovascular invasion (LVI) and receptor status significantly related to TTP but none of the covariates related to OS. In multivariate analysis, T stage was the only independent predictor of TTP. In metastatic disease, median CTC>or=13 optimally identified patients with shorter TTP (p=0.01). In univariate analysis, median CTC level >or=13 and prior lines of chemotherapy predicted for TTP while in multivariate analysis, median CTC level >or=13 was the only significant independent prognostic factor (p=0.02). No relationship between CTC level and OS was found in this subgroup. CONCLUSION: Median CTC level determined in the course of treatment predicts for TTP in metastatic breast cancer. In early breast cancer, an association was found between CTC level and TTP although this did not reach statistical significance (p=0.05).


Assuntos
Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Prognóstico , Adulto , Idoso , Progressão da Doença , Feminino , Filtração , Humanos , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Metástase Neoplásica , Modelos de Riscos Proporcionais , Resultado do Tratamento
19.
Breast Cancer Res Treat ; 86(3): 237-47, 2004 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-15567940

RESUMO

The biological and clinical significance of circulating tumor cells (CTC) in the peripheral blood of breast cancer patients is not known. To study this question, we used a direct visualization assay to correlate the number of CTC with disease stage and progression. The CTC were enriched from the nucleated cell fraction by filtration and enumerated visually following immunostaining with anti-cytokeratin 8 (CK8) antibody CAM 5.2. In mixing experiments, we achieved a limit of detection of 5 MCF7 cells per 5 ml of blood or 5 x 10(7) peripheral blood leukocytes (PBL). We did not detect CTC in any control subjects (0/20). In 131 breast cancer patients, we found a higher incidence of CTC in patients with distant metastatic 36/51 (71%) than those with node-positive 17/36 (47%) (p = 0.026), or node-negative 17/44 (39%) (p = 0.001) disease. The distribution of the highest numbers of CTC observed in individual patients by repeated sampling over time ranged from 1 to 700 per 5 ml of blood with a trend toward higher numbers in those with distant metastases. In comparison with previous studies of equal specificity, based on a similar absence of CTC in controls, we report a higher incidence of CTC in node-negative and node-positive patients, suggesting a more frequent detection of CTC by our approach. This higher incidence was achieved, in part, by repeated sampling of our study population over time. Our results support the concept that CTC can be detected and enumerated in peripheral blood and that this minimally invasive assay merits further evaluation as a potential prognostic indicator and marker of disease progression.


Assuntos
Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Metástase Neoplásica , Estadiamento de Neoplasias , Células Neoplásicas Circulantes , Estudos de Casos e Controles , Progressão da Doença , Feminino , Humanos , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...