Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 7913, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256370

RESUMO

Nitrogen (N) deficiency responses are essential for plant survival and reproduction. Here, via an expression genome-wide association study (eGWAS), we reveal a mechanism that regulates microRNA (miRNA) dynamics necessary for N deficiency responses in Arabidopsis. Differential expression levels of three NAC transcription factor (TF) genes involved in leaf N deficiency responses among Arabidopsis accessions are most significantly associated with polymorphisms in HASTY (HST), which encodes an importin/exportin family protein responsible for the generation of mature miRNAs. HST acts as a negative regulator of N deficiency-induced leaf senescence, and the disruption and overexpression of HST differently modifies miRNA dynamics in response to N deficiency, altering levels of miRNAs targeting transcripts. Interestingly, N deficiency prevents the interaction of HST with HST-interacting proteins, DCL1 and RAN1, and some miRNAs. This suggests that HST-mediated regulation of miRNA dynamics collectively controls regulations mediated by multiple N deficiency response-associated NAC TFs, thereby being central to the N deficiency response network.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Regulação da Expressão Gênica de Plantas , MicroRNAs , Nitrogênio , Folhas de Planta , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , MicroRNAs/metabolismo , MicroRNAs/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Folhas de Planta/metabolismo , Folhas de Planta/genética , Nitrogênio/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Senescência Vegetal/genética , Estudo de Associação Genômica Ampla , Carioferinas/metabolismo , Carioferinas/genética , Ribonuclease III/metabolismo , Ribonuclease III/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteína ran de Ligação ao GTP/metabolismo , Proteína ran de Ligação ao GTP/genética
3.
Plant Physiol ; 192(4): 3030-3048, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37021761

RESUMO

Phosphorus is an essential nutrient acquired from soil as phosphate (Pi), and its deficiency severely reduces plant growth and crop yield. Here, we show that single nucleotide polymorphisms (SNPs) at the PHOSPHATIDYLINOSITOL TRANSFER PROTEIN7 (AtPITP7) locus, which encodes a chloroplastic Sec14-like protein, are associated with genetic diversity regarding Pi uptake activity in Arabidopsis (Arabidopsis thaliana). Inactivation of AtPITP7 and its rice (Oryza sativa) homolog (OsPITP6) through T-DNA insertion and CRISPR/Cas9-mediated gene editing, respectively, decreased Pi uptake and plant growth, regardless of Pi availability. By contrast, overexpression of AtPITP7 and OsPITP6 enhanced Pi uptake and plant growth, especially under limited Pi supply. Importantly, overexpression of OsPITP6 increased the tiller number and grain yield in rice. Targeted metabolome analysis of glycerolipids in leaves and chloroplasts revealed that inactivation of OsPITP6 alters phospholipid contents, independent of Pi availability, diminishing the reduction in phospholipid content and increase in glycolipid content induced by Pi deficiency; meanwhile, overexpression of OsPITP6 enhanced Pi deficiency-induced metabolic alterations. Together with transcriptome analysis of ospitp6 rice plants and phenotypic analysis of grafted Arabidopsis chimeras, these results suggest that chloroplastic Sec14-like proteins play an essential role in growth modulations in response to changes in Pi availability, although their function is critical for plant growth under any Pi condition. The superior traits of OsPITP6-overexpressing rice plants also highlight the potential of OsPITP6 and its homologs in other crops as additional tools for improving Pi uptake and plant growth in low Pi environments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/genética , Arabidopsis/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
4.
Curr Biol ; 32(24): 5344-5353.e6, 2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36332616

RESUMO

In plants, nitrate is the dominant nitrogen (N) source and a critical nutrient signal regulating various physiological and developmental processes.1,2,3,4 Nitrate-responsive gene regulatory networks are widely believed to control growth, development, and life cycle in addition to N acquisition and utilization,1,2,3,4 and NIN-LIKE PROTEIN (NLP) transcriptional activators have been identified as the master regulators governing the networks.5,6,7 However, it remains to be elucidated how nitrate signaling regulates respective physiological and developmental processes. Here, we have identified a new nitrate-activated transcriptional cascade involved in chloroplast development and the maintenance of chloroplast function in Arabidopsis. This cascade consisting of NLP7 and two homeodomain-leucine zipper (HD-Zip) class I transcription factors, HOMEOBOX PROTEIN52 (HB52) and HB54,8,9 was responsible for nitrate- and light-dependent expression of VAR2 encoding the FtsH2 subunit of the chloroplast FtsH protease involved in the quality control of photodamaged thylakoid membrane proteins.10,11 Consistently, the nitrate-activated NLP7-HB52/54-VAR2 pathway underpinned photosynthetic light energy utilization, especially in high light environments. Furthermore, genetically enhancing the NLP7-HB52/54-VAR2 pathway resulted in improved light energy utilization under high light and low N conditions, a superior agronomic trait. These findings shed light on a new role of nitrate signaling and a novel mechanism for integrating information on N nutrient and light environments, providing a hint for enhancing the light energy utilization of plants in low N environments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Nitratos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nitrogênio/metabolismo , Regulação da Expressão Gênica de Plantas
5.
J Agric Food Chem ; 66(50): 13303-13309, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30495953

RESUMO

Bitertanol is a widely used triazole fungicide and consists of four stereoisomers. A new high-performance liquid chromatography (HPLC) method was developed for simultaneous analysis of the four stereoisomers in apple, pear, tomato, cucumber, and soil. The mechanism of separation was explained with molecular docking and effects of thermodynamic parameters on the resolution. The absolute configuration and optical rotation of four stereoisomers were confirmed by X-ray diffraction and HPLC tandem circular dichroism, respectively. A good linearity ( R2 ≥ 0.999) was obtained for four stereoisomers in all matrix-matched calibration curves in the range of 0.02-10 mg/L. The mean recoveries of four stereoisomers in five matrices ranged from 74.6% to 101.0% with an intraday and interday relative standard deviation from 0.6% to 9.9%. Stereoselective degradation of bitertanol in cucumber was observed: (1 R,2 S)-bitertanol and (1 R,2 R)-bitertanol were preferentially degraded with enantiomeric fraction values from 0.5 to 0.43 at 7 d and 0.42 at 5 d, respectively. This research provides a useful tool for the analysis of bitertanol stereoisomers.


Assuntos
Compostos de Bifenilo/química , Cromatografia Líquida de Alta Pressão/métodos , Cucumis sativus/química , Fungicidas Industriais/química , Triazóis/química , Resíduos de Drogas/química , Contaminação de Alimentos/análise , Cinética , Solanum lycopersicum/química , Malus/química , Pyrus/química , Estereoisomerismo , Espectrometria de Massas em Tandem , Verduras/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA