Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38732501

RESUMO

Obesity can lead to excessive lipid accumulation in non-adipose tissues, such as the liver and skeletal muscles, leading to ectopic lipid deposition and damaging target organ function through lipotoxicity. FGF-21 is a key factor in regulating lipid metabolism, so we aim to explore whether FGF-21 is involved in improving ectopic lipid deposition. We observed the characteristics of ectopic lipid deposition in the liver and skeletal muscles of obesity-resistant mice, detected the expression of FGF-21 and perilipin, and found that obesity-resistant mice showed a decrease in ectopic lipid deposition in the liver and skeletal muscles and increased expression of FGF-21. After inhibiting the expression of FGF-21, a more severe lipid deposition in liver cells and skeletal muscle cells was found. The results indicate that inhibiting FGF-21 can exacerbate ectopic lipid deposition via regulating lipid droplet synthesis and decomposition, as well as free fatty acid translocation and oxidation. In conclusion, FGF-21 is involved in improving ectopic lipid deposition caused by obesity in the liver and skeletal muscles.


Assuntos
Fatores de Crescimento de Fibroblastos , Metabolismo dos Lipídeos , Fígado , Músculo Esquelético , Obesidade , Animais , Fatores de Crescimento de Fibroblastos/metabolismo , Músculo Esquelético/metabolismo , Fígado/metabolismo , Camundongos , Obesidade/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Perilipina-1/metabolismo , Gotículas Lipídicas/metabolismo
2.
Br J Pharmacol ; 2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38679474

RESUMO

BACKGROUND AND PURPOSE: Amyloid-ß (Aß) peptide is one of the more important pathological markers in Alzheimer's disease (AD). The development of AD impairs autophagy, which results in an imbalanced clearance of Aß. Our previous research demonstrated that AdipoRon, an agonist of adiponectin receptors, decreased the deposition of Aß and enhanced cognitive function in AD. However, the exact mechanisms by which AdipoRon affects Aß clearance remain unclear. EXPERIMENTAL APPROACH: We studied how AdipoRon affects autophagy in HT22 cells and APP/PS1 transgenic mice. We also investigated the signalling pathway involved and used pharmacological inhibitors to examine the role of autophagy in this process. KEY RESULTS: AdipoRon promotes Aß clearance by activating neuronal autophagy in the APP/PS1 transgenic mice. Interestingly, we found that AdipoRon induces the nuclear translocation of GAPDH, where it interacts with the SIRT1/DBC1 complex. This interaction then leads to the release of DBC1 and the activation of SIRT1, which in turn activates autophagy. Importantly, we found that inhibiting either GAPDH or SIRT1 to suppress the activity of SIRT1 counteracts the elevated autophagy and decreased Aß deposition caused by AdipoRon. This suggests that SIRT1 plays a critical role in the effect of AdipoRon on autophagic induction in AD. CONCLUSION AND IMPLICATIONS: AdipoRon promotes the clearance of Aß by enhancing autophagy through the AdipoR1/AMPK-dependent nuclear translocation of GAPDH and subsequent activation of SIRT1. This novel molecular pathway sheds light on the modulation of autophagy in AD and may lead to the development of new therapeutic strategies targeting this pathway.

3.
Mol Med Rep ; 28(4)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37681454

RESUMO

Vascular endothelial growth factor B (VEGFB) plays a crucial role in glucolipid metabolism and is highly associated with type 2 diabetes mellitus (T2DM). The role of VEGFB in the insulin secretion of ß cells remains unverified. Thus, the present study aimed to discuss the effect of VEGFB on regulating insulin secretion in T2DM development, and its underlying mechanism. A high­fat diet and streptozocin (STZ) were used for inducing T2DM in mice model, and VEGFB gene in islet cells of T2DM mice was knocked out by CRISPR Cas9 and overexpressed by adeno­Associated Virus (AAV) injection. The effect of VEGFB and its underlying mechanism was assessed by light microscopy, electron microscopy and fluorescence confocal microscopy, enzyme­linked immunosorbent assay, mass spectrometer and western blot analysis. The decrement of insulin secretion in islet ß cell of T2DM mice were aggravated and blood glucose remained at a high level after VEGFB knockout (KO). However, glucose tolerance and insulin sensitivity of T2DM mice were improved after the AAV­VEGFB186 injection. VEGFB KO or overexpression can inhibit or activate PLCγ/IP3R in a VEGFR1­dependent manner. Then, the change of PLCγ/IP3R caused by VEGFB/VEGFR1 will alter the expression of key factors on the Ca2+/CaMK2 signaling pathway such as PPP3CA. Moreover, VEGFB can cause altered insulin secretion by changing the calcium concentration in ß cells of T2DM mice. These findings indicated that VEGFB activated the Ca2+/CaMK2 pathway via VEGFR1­PLCγ and IP3R pathway to regulate insulin secretion, which provides new insight into the regulatory mechanism of abnormal insulin secretion in T2DM.


Assuntos
Traumatismos Craniocerebrais , Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animais , Camundongos , Secreção de Insulina , Fator B de Crescimento do Endotélio Vascular , Transdução de Sinais , Dependovirus/genética
4.
Sensors (Basel) ; 23(17)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37688066

RESUMO

The escalation of anthropogenic heat emissions poses a significant threat to the urban thermal environment as cities continue to develop. However, the impact of urban spatial form on anthropogenic heat flux (AHF) in different urban functional zones (UFZ) has received limited attention. In this study, we employed the energy inventory method and remotely sensed technology to estimate AHF in Beijing's central area and utilized the random forest algorithm for UFZ classification. Subsequently, linear fitting models were developed to analyze the relationship between AHF and urban spatial form indicators across diverse UFZ. The results show that the overall accuracy of the classification was determined to be 87.2%, with a Kappa coefficient of 0.8377, indicating a high level of agreement with the actual situation. The business/commercial zone exhibited the highest average AHF value of 33.13 W m-2 and the maximum AHF value of 338.07 W m-2 among the six land functional zones, indicating that business and commercial areas are the primary sources of anthropogenic heat emissions. The findings reveal substantial variations in the influence of urban spatial form on AHF across different UFZ. Consequently, distinct spatial form control requirements and tailored design strategies are essential for each UFZ. This research highlights the significance of considering urban spatial form in mitigating anthropogenic heat emissions and emphasizes the need for customized planning and renewal approaches in diverse UFZ.

5.
Hum Cell ; 36(6): 1915-1927, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37584829

RESUMO

The protein PIAS1 functions as a type of ubiquitin-protease, which is known to play an important regulatory role in various diseases, including cardiovascular diseases and cancers. Its mechanism of action primarily revolves around regulating the transcription, translation, and modification of target proteins. This study investigates role and mechanism of PIAS1 in the RUNX3/TSP-1 axis and confirms its therapeutic effects on diabetes-related complications in animal models. A diabetic vascular injury was induced in human umbilical vein endothelial cells (HUVECs) by stimulation with H2O2 and advanced glycation end product (AGE), and a streptozotocin (STZ)-induced mouse model of diabetes was constructed, followed by detection of endogenous PIAS1 expression and SUMOylation level of RUNX3. Effects of PIAS1 concerning RUNX3 and TSP-1 on the HUVEC apoptosis and inflammation were evaluated using the ectopic expression experiments. Down-regulated PIAS1 expression and SUMOylation level of RUNX3 were identified in the H2O2- and AGE-induced HUVEC model of diabetic vascular injury and STZ-induced mouse models of diabetes. PIAS1 promoted the SUMOylation of RUNX3 at the K148 site of RUNX3. PIAS1-mediated SUMOylation of RUNX3 reduced RUNX3 transactivation activity, weakened the binding of RUNX3 to the promoter region of TSP-1, and caused downregulation of TSP-1 expression. PIASI decreased the expression of TSP-1 by inhibiting H2O2- and AGE-induced RUNX3 de-SUMOylation, thereby arresting the inflammatory response and apoptosis of HUVECs. Besides, PIAS1 reduced vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes by inhibiting the RUNX3/TSP-1 axis. Our study proved that PIAS1 suppressed vascular endothelial injury and atherosclerotic plaque formation in mouse models of diabetes via the RUNX3/TSP-1 axis.

6.
Metabolites ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422269

RESUMO

The conversion of white adipocytes into brown adipocytes improves their thermogenesis and promotes energy consumption. Epigenetic modifications affect related genes and interfere with energy metabolism, and these are the basis of new ideas for obesity treatment. Neonatal mice show high levels of DNA hypermethylation in white adipose tissue early in life and low levels in brown adipose tissue. Thus, we considered that the regulation of DNA methylation may play a role in the conversion of white adipose to brown. We observed growth indicators, lipid droplets of adipocytes, brown fat specific protein, and miRNA-133a after treatment with 5-Aza-2'-deoxycytidine. The expression of Prdm16 and Ucp-1 in adipocytes was detected after inhibiting miRNA-133a. The results showed a decrease in total lipid droplet formation and an increased expression of the brown fat specific proteins Prdm16 and Ucp-1. This study indicated that 5-Aza-2'-deoxycytidine promotes white adipocyte browning following DNA demethylation, possibly via the modulation of miR-133a and Prdm16.

7.
Int Immunopharmacol ; 110: 109045, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35978505

RESUMO

Adult neurogenesis in hippocampus dentate gyrus (DG) is associated with numerous neurodegenerative diseases such as aging and Alzheimer's disease (AD). Overactivation of microglia induced neuroinflammation is well acknowledged to contribute to the impaired neurogenesis in pathologies of these diseases and then leading to cognitive dysfunction. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia to modulate inflammatory response. However, whether inhibition of H3R is responsible for the neurogenesis and cognition in chronic neuroinflammation induced injury and the mechanism remains unclear. In this study, we found that inhibition of H3R by thioperamide reduced the microglia activity and promoted a phenotypical switch from pro-inflammatory M1 to anti-inflammatory M2 in microglia, and ultimately attenuated lipopolysaccharide (LPS) induced neuroinflammation in mice. Additionally, thioperamide rescued the neuroinflammation induced impairments of neurogenesis and cognitive function. Mechanically, the neuroprotection of thioperamide was involved in histamine dependent H2 receptor (H2R) activation, because cimetidine, an H2R antagonist but not pyrilamine, an H1R antagonist reversed the above effects of thioperamide. Moreover, thioperamide activated the H2R downstream phosphorylated protein kinase A (PKA)/cyclic AMP response element-binding protein (CREB) pathway but inhibited nuclear factor kappa-B (NF-κB) signaling. Activation of CREB by thioperamide promoted interaction of CREB-CREB Binding Protein (CBP) to increase anti-inflammatory cytokines (Interleukin-4 and Interleukin-10) and brain-derived neurotrophic factor (BDNF) release but inhibited NF-κB-CBP interaction to decrease pro-inflammatory cytokines (Interleukin-1ß, Interleukin-6 and Tumor necrosis factor α) release. H89, an inhibitor of PKA/CREB signaling, abolished effects of thioperamide on neuroinflammation and neurogenesis. Taken together, these results suggested under LPS induced neuroinflammation, the H3R antagonist thioperamide inhibited microglia activity and inflammatory response, and ameliorated impairment of neurogenesis and cognitive dysfunction via enhancing histamine release. Histamine activated H2R and reinforced CREB-CBP interaction but weakened NF-κB-CBP interaction to exert anti-inflammatory effects. This study uncovered a novel histamine dependent mechanism behind the therapeutic effect of thioperamide on neuroinflammation.


Assuntos
Lipopolissacarídeos , NF-kappa B , Animais , Anti-Inflamatórios/farmacologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citocinas/metabolismo , Hipocampo , Histamina/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia , NF-kappa B/metabolismo , Neurogênese , Doenças Neuroinflamatórias , Receptores Histamínicos H2/metabolismo
8.
Artigo em Inglês | MEDLINE | ID: mdl-35954551

RESUMO

As suicides incurred by the COVID-19 outbreak keep happening in many countries, researchers have raised concerns that the ongoing pandemic may lead to "a wave of suicides" in society. Suicidal ideation (SI) is a critical factor in conducting suicide intervention and also an important indicator for measuring people's mental health. Therefore, it is vital to identify the influencing factors of suicidal ideation and its psychological mechanism during the outbreak. Based on the terror management theory, in the present study we conducted a social media big data analysis to explore the joint effects of mortality salience (MS), negative emotions (NE), and cultural values on suicidal ideation in 337 regions on the Chinese mainland. The findings showed that (1) mortality salience was a positive predictor of suicidal ideation, with negative emotions acting as a mediator; (2) individualism was a positive moderator in the first half-path of the mediation model; (3) collectivism was a negative moderator in the first half-path of the mediation model. Our findings not only expand the application of the terror management theory in suicide intervention but provide some insights into post-pandemic mental healthcare. Timely efforts are needed to provide psychological interventions and counseling on outbreak-caused negative emotions in society. Compared with people living in collectivism-prevailing regions, those living in individualism-prevailing regions may be more vulnerable to mortality salience and negative emotions and need more social attention.


Assuntos
COVID-19 , Suicídio , COVID-19/epidemiologia , Emoções , Humanos , Pandemias , Ideação Suicida
9.
Exp Neurol ; 347: 113870, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34563511

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease, which characterized by deposition of amyloid-ß (Aß) plaques, neurofibrillary tangles, neuronal loss, and accompanied by neuroinflammation. Neuroinflammatory processes are well acknowledged to contribute to the progression of AD pathology. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Recently, studies show that H3R are highly expressed not only in neurons but also in microglia and astrocytes. H3R antagonist has been reported to have anti-inflammatory efficacy. However, whether inhibition of H3R is responsible for the anti-neuroinflammation in glial cells and neuroprotection on APPswe, PSEN1dE9 (APP/PS1 Tg) mice remain unclear. In this study, we found that inhibition of H3R by thioperamide reduced the gliosis and induced a phenotypical switch from A1 to A2 in astrocytes, and ultimately attenuated neuroinflammation in APP/PS1 Tg mice. Additionally, thioperamide rescued the decrease of cyclic AMP response element-binding protein (CREB) phosphorylation and suppressed the phosphorylated P65 nuclear factor kappa B (p-P65 NF-κB) in APP/PS1 Tg mice. H89, an inhibitor of CREB signaling, abolished these effects of thioperamide to suppress gliosis and proinflammatory cytokine release. Lastly, thioperamide alleviated the deposition of amyloid-ß (Aß) and cognitive dysfunction in APP/PS1 mice, which were both reversed by administration of H89. Taken together, these results suggested the H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated gliosis and inflammation inhibiting, which contributed to Aß clearance. This study uncovered a novel mechanism involving inflammatory regulating behind the therapeutic effect of thioperamide in AD.


Assuntos
Doença de Alzheimer/patologia , Disfunção Cognitiva/patologia , Gliose/patologia , Doenças Neuroinflamatórias/patologia , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Masculino , Camundongos , Camundongos Transgênicos
10.
Diabetes Metab Syndr Obes ; 14: 4351-4360, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34737591

RESUMO

PURPOSE: To investigate resistance to diet-induced obesity (DIO) and monosodium glutamate (MSG)-induced obesity as well as the underlying mechanisms. METHODS: Newborn mice were used to construct DIO and MSG-induced obesity models. Obesity indices, such as body weight, body length, Lee index, body temperature, food intake, fat weight, and leptin level, were examined. Mice that did not exhibit obesity were defined as the obesity-resistant group. The morphological changes of white adipose tissue were observed by hematoxylin and eosin staining, and expression levels of PR domain containing 16 (Prdm16) and uncoupling protein-1 (Ucp-1) in white adipose tissue were measured by Western blot. RESULTS: Obesity-resistant mice fed a high-fat diet showed resistance beginning at week 5 along with lower weights and lengths than those in the obesity group from weeks 5 to 12. MSG-induced obesity-resistant mice showed features consistent with resistance to obesity from week 1 along with higher body lengths relative to the obesity group; however, the weight difference was not significant until week 10, when body weights decreased significantly in obesity-resistant mice. The Lee index was lower in obesity-resistant mice than in the obesity group and the normal group, further suggesting obesity resistance. Additionally, obesity-resistant mice showed higher levels of leptin, whereas obese mice induced by a high-fat diet showed leptin resistance. Furthermore, Prdm16 and Ucp-1 levels were both downregulated in the obesity group and upregulated in obesity-resistant mice, showing that white fat browning was highest in obesity-resistant mice. CONCLUSION: The phenotypes of mice with DIO and MSG-induced obesity differed. Obesity resistance might be related to Prdm16 and Ucp-1-mediated white adipocyte browning.

11.
J Transl Med ; 19(1): 469, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34798872

RESUMO

BACKGROUND: Diabetes mellitus (DM), a most common chronic disease, is featured with impaired endothelial function and bioavailability of nitric oxide (NO), while E3 ubiquitin ligase appears to alleviate endothelial dysfunction as a promising option for DM treatment. Herein, we aimed to determine whether E3 ubiquitin ligase casitas B-lineage lymphoma (Cbl) alleviates endothelial dysfunction in DM rats by JAK2/STAT4 pathway. METHODS: A rat model of DM was developed through intraperitoneal injection of streptozotocin, followed by collection of aortic tissues to determine the expression of Cbl, JAK2, runt-related transcription factor 3 (Runx3) and STAT4. Human umbilical vein endothelial cells (HUVECs) were cultured in high glucose (HG) condition to induce DM as an in vitro model. With gain- and loss-function method, we assessed the aberrantly expressed Cb1 on endothelial dysfunction, NO production and apoptosis of HUVECs. RESULTS: Cbl was reduced in DM rat tissues and HG-induced HUVECs, where JAK2, Runx3 and STAT4 were elevated. It was found that overexpression of Cbl alleviated endothelial dysfunction by increasing NO production and restoring vasodilation and suppressing apoptosis of HUVECs. Mechanistically, Cb1 enhanced JAK2 ubiquitination and decreased JAK2 and STAT4 expression, where STAT4 improved Runx3 expression by regulating histone H3 lysine 4 trimethylation level. Overexpression of JAK2 and STAT4, or Runx3 increased apoptosis of HUVECs, abrogating the effect of Cb1 on endothelial function. CONCLUSION: In conclusion, Cbl alleviates endothelial dysfunction by inactivation of the JAK2/STAT4 pathway and inhibition of Runx3 expression in DM. These evidence might underlie novel Cbl-based treatment against DM in the future.


Assuntos
Diabetes Mellitus , Histonas , Animais , Células Endoteliais da Veia Umbilical Humana , Humanos , Janus Quinase 2 , Ratos , Ubiquitina-Proteína Ligases
12.
Reprod Toxicol ; 105: 198-210, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34536542

RESUMO

Adverse environmental stress exposure at critical perinatal stages can alter cardiovascular development, which could persist into adulthood and develop a cardiovascular dysfunctional phenotype late in life. However, the underlying molecular mechanisms remain largely unknown. The present study provided a direct evidence that DNA methylation is a key epigenetic mechanism contributing to the developmental origins of adult cardiovascular disease. We hypothesized that DNA hypomethylation at neonatal stage alters gene expression patterns in the heart, leading to development of a cardiac ischemia-sensitive phenotype late in life. To test this hypothesis, a DNA methylation inhibitor 5-Aza-2-deoxycytidine (5-Aza) was administered in newborn rats from postnatal day 1-3. Cardiac function and related key genes were measured in 2-week- and 2-month-old animals, respectively. 5-Aza treatment induced an age- and sex-dependent inhibition of global and gene-specific DNA methylation levels in left ventricles, resulting in a long-lasting growth restriction but an asymmetry increase in the heart-to-body weight ratio. In addition, treatment with 5-Aza enhanced ischemia and reperfusion-induced cardiac dysfunction and injury in adults as compared with the saline controls, which was associated with up-regulations of miRNA-181a and angiotensin II receptor type 1 & 2 gene expressions, but down-regulations of PKCε, Atg5, and GSK3ß gene expressions in left ventricles. In conclusion, our results provide compelling evidence that neonatal DNA methylation deficiency is a key mechanism contributing to differentially reprogram cardiac gene expression patterns, leading to development of a heart ischemia-sensitive phenotype late in life.


Assuntos
Metilação de DNA , Isquemia Miocárdica , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Metilação de DNA/efeitos dos fármacos , Metilases de Modificação do DNA/antagonistas & inibidores , Metilases de Modificação do DNA/metabolismo , Decitabina/farmacologia , Feminino , Coração/efeitos dos fármacos , Coração/fisiologia , Masculino , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Fenótipo , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 1 de Angiotensina/metabolismo , Receptores de Angiotensina/genética , Receptores de Angiotensina/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/fisiopatologia
13.
Aging Cell ; 20(3): e13333, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33682314

RESUMO

Alzheimer's disease (AD) is an age-related neurodegenerative disease, and the imbalance between production and clearance of ß-amyloid (Aß) is involved in its pathogenesis. Autophagy is an intracellular degradation pathway whereby leads to removal of aggregated proteins, up-regulation of which may be a plausible therapeutic strategy for the treatment of AD. Histamine H3 receptor (H3R) is a presynaptic autoreceptor regulating histamine release via negative feedback way. Our previous study showed that thioperamide, as an antagonist of H3R, enhances autophagy and protects against ischemic injury. However, the effect of thioperamide on autophagic function and Aß pathology in AD remains unknown. In this study, we found that thioperamide promoted cognitive function, ameliorated neuronal loss, and Aß pathology in APP/PS1 transgenic (Tg) mice. Interestingly, thioperamide up-regulated autophagic level and lysosomal function both in APP/PS1 Tg mice and in primary neurons under Aß-induced injury. The neuroprotection by thioperamide against AD was reversed by 3-MA, inhibitor of autophagy, and siRNA of Atg7, key autophagic-related gene. Furthermore, inhibition of activity of CREB, H3R downstream signaling, by H89 reversed the effect of thioperamide on promoted cell viability, activated autophagic flux, and increased autophagic-lysosomal proteins expression, including Atg7, TFEB, and LAMP1, suggesting a CREB-dependent autophagic activation by thioperamide in AD. Taken together, these results suggested that H3R antagonist thioperamide improved cognitive impairment in APP/PS1 Tg mice via modulation of the CREB-mediated autophagy and lysosomal pathway, which contributed to Aß clearance. This study uncovered a novel mechanism involving autophagic regulating behind the therapeutic effect of thioperamide in AD.


Assuntos
Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Peptídeos beta-Amiloides/metabolismo , Autofagia , Cognição , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Piperidinas/farmacologia , Doença de Alzheimer/complicações , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Autofagia/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cognição/efeitos dos fármacos , Disfunção Cognitiva/complicações , Disfunção Cognitiva/fisiopatologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Modelos Biológicos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/farmacologia , Presenilina-1/metabolismo , Regulação para Cima/efeitos dos fármacos
14.
Am J Physiol Regul Integr Comp Physiol ; 317(6): R803-R813, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31553625

RESUMO

Maternal cigarette smoking is a major perinatal insult that contributes to an increased risk of cardiovascular and neurodevelopmental diseases in offspring. Our previous studies revealed that perinatal nicotine exposure reprograms a sensitive phenotype in neonatal hypoxic-ischemic encephalopathy (HIE), yet the underlying molecular mechanisms remain largely elusive. The present study tested the hypothesis that perinatal nicotine exposure impacts autophagy signaling in the developing brain, resulting in enhanced susceptibility to neonatal HIE. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Neonatal HIE was conducted in 9-day-old male rat pups. Protein kinase B/glycogen synthase kinase-3ß/mammalian target of rapamycin (Akt/GSK-3ß/mTOR) signaling and key autophagy markers were determined by Western blotting analysis. Rapamycin and MK2206 were administered via intracerebroventricular injection. Nicotine exposure significantly inhibited autophagy activities in neonatal brain tissues, characterized by an increased ratio of phosphoylated (p-) to total mTOR protein expression but reduced levels of autophagy-related 5, Beclin 1, and LC3ßI/II. Treatment with mTOR inhibitor rapamycin effectively blocked nicotine-mediated autophagy deficiency and, more importantly, reversed the nicotine-induced increase in HI brain infarction. In addition, nicotine exposure significantly upregulated p-Akt and p-GSK-3ß. Treatment with the Akt selective inhibitor MK2206 reversed the enhanced p-Akt and p-GSK-3ß, restored basal autophagic flux, and abolished nicotine-mediated HI brain injury. These findings suggest that perinatal nicotine-mediated alteration of Akt/GSK-3ß/mTOR signaling plays a key role in downregulation of autophagic flux, which contributes to the development of hypoxia/ischemia-sensitive phenotype in the neonatal brain.


Assuntos
Autofagia/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipóxia-Isquemia Encefálica/induzido quimicamente , Nicotina/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/genética , Injeções Intraventriculares , Agonistas Nicotínicos/farmacologia , Gravidez , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/genética
15.
Neurol Res ; 39(4): 357-366, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28173746

RESUMO

BACKGROUND: Sepsis-associated encephalopathy (SAE) is a frequent and nasty complication of sepsis, associated with patients increased risk of death and long-term brain dysfunctions. OBJECTIVE: This study aimed to explore the effect of dexmedetomidine (Dex), an anesthetic adjuvant, on the development of SAE. METHODS: Lipopolysaccharide (LPS, 10 mg/kg) was intraperitoneally injected to male BALB/c mice to induce sepsis. Dex (25 µg/kg) was given intraperitoneally immediately after LPS injection. Levels of TNF-α, IL-1ß, malondialdehyde (MDA) and reactive oxygen species (ROS) were detected in mice brains tissue eight hours later after drug administration. Hematoxylin and eosin (HE) staining was used to detect brain pathologic change. We also detected apoptosis using terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay and Bcl-2, Bax, Caspase-3 expressions by western blot. RESULTS: Levels of TNF-α, IL-1ß, MDA and ROS were increased in the brain tissue after LPS treatment, indicating that LPS injection resulted in increased brain inflammation and elevated oxidative stress. We further found a large quantity of degenerative neurons widespread in hippocampal CA1, CA3 regions and cerebral cortex according to HE staining. Dex could significantly decrease brain inflammation and oxidative stress by decreasing the levels of TNF-α, IL-1ß, MDA and ROS, and ameliorate neurodegenerative changes. The associated results also demonstrated that Dex treatment ameliorated the LPS-induced neuronal apoptosis, probably by upregulating the Bcl-2 expression and downregulating the Bax expression. CONCLUSION: Our results indicated that Dex could reverse neurodegenerative changes and neuroapoptosis in mice brain of septic mice induced by LPS through anti-inflammatory and antiapoptotic effects.


Assuntos
Encefalopatias/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Dexmedetomidina/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Sepse/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Encefalopatias/etiologia , Encefalopatias/patologia , Encefalopatias/fisiopatologia , Modelos Animais de Doenças , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Masculino , Malondialdeído/metabolismo , Camundongos Endogâmicos BALB C , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/fisiopatologia , Neuroimunomodulação/efeitos dos fármacos , Neuroimunomodulação/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Distribuição Aleatória , Espécies Reativas de Oxigênio/metabolismo , Sepse/complicações , Sepse/patologia , Sepse/fisiopatologia , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo
16.
Oncol Lett ; 14(6): 7391-7397, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29344179

RESUMO

Cancer cell vaccines with strong specificity and low tolerance have been revealed to be a promising option for oncology treatment. Various antigen forms, including tumor cell lysate and glutaraldehyde-fixed tumor cells, have been intensively used in cancer vaccine preparation. However, the most effective antigen form has not yet been identified. In the present study, the antitumor efficiency of vaccines prepared by these two antigen forms was systematically investigated. Murine H22 hepatocellular carcinoma cell lysate and glutaraldehyde-fixed H22 hepatocellular carcinoma cells were conjugated with Freund's adjuvant to prepare vaccines, H22-TCL and Fixed-H22-CELL, respectively. H22-TCL and Fixed-H22-CELL were administrated by subcutaneous immunization in prophylactic and therapeutic strategies. The results of the present study revealed that H22-TCL immunization induced more significant inhibition on tumor growth and metastasis compared with Fixed-H22-CELL injection. Furthermore, histopathological observation demonstrated that H22-TCL vaccine induced larger areas of continuous necrosis within tumors compared to the Fixed-H22-CELL vaccine, which was associated with the extent of tumor inhibition. More importantly, the H22-TCL vaccine injection elicited more evident antigen-specific antibody responses compared with the Fixed-H22-CELL injection. Splenocytes from H22-TCL vaccinated mice also exhibited a more significant T lymphocytes proliferation compared with that from Fixed-H22-CELL-treated mice. All the results indicated that whole tumor cell lysate may be a more effective antigen form in cancer vaccine preparation compared with glutaraldehyde-fixed tumor cells, which elicited more marked antigen specific humoral and cellular immune responses resulted with a superior antitumor efficiency. This would have important clinical signification for cancer vaccine preparation and serve a role in prompting this to other researchers.

17.
Nutr Neurosci ; 19(2): 86-93, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-25211138

RESUMO

OBJECTIVE: To observe the effect of taurine treatment in rats with monosodium glutamate (MSG)-induced obesity. METHODS: Rats with MSG-induced obesity were administered taurine for five weeks. The Lee's index, food intake, blood pressure, body temperature, body mass index (BMI), fat weight, and triglyceride (TG), low density lipoprotein (LDL), and high density lipoprotein (HDL) levels were compared. The PGC-1α expression levels in white and brown adipose were measured using reverse transcription polymerase chain reaction and western blotting, and pathological changes in the arcuate nucleus and liver were examined. RESULTS: Compared with the model group, BMI, TG, and LDL in the high and low taurine dose groups were significantly lower, while HDL was higher. Body temperature in the taurine treatment groups was higher, and blood pressure was lower. The weight of brown fat in the taurine treatment groups was significantly higher than in the model group, while the white fat weight was significantly lower. Compared with the control group, the PGC-1α levels in white and brown adipose were higher in the taurine treatment groups and more significantly up-regulated in brown adipose. DISCUSSION: This study suggests that taurine prevents obesity in MSG-treated rats and may be closely associated with energy metabolism.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Obesidade/tratamento farmacológico , Taurina/farmacologia , Fatores de Transcrição/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Índice de Massa Corporal , Peso Corporal , HDL-Colesterol/sangue , LDL-Colesterol/sangue , Relação Dose-Resposta a Droga , Metabolismo Energético , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Obesidade/induzido quimicamente , Tamanho do Órgão/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Ratos , Ratos Sprague-Dawley , Glutamato de Sódio/efeitos adversos , Fatores de Transcrição/genética , Triglicerídeos/sangue
18.
Biochem Biophys Res Commun ; 439(4): 459-63, 2013 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-24025683

RESUMO

A rhodamine-based "turn-on" fluorescent probe 1 was synthesized with high yield. The recognizing behavior displays high selectivity of 1 toward Fe(2+) with a 2:1 complex, and 1 exhibits a stable response for Fe(2+) over a concentration range from 2 µM to 24 µM. Most importantly, probe is hardly interfered by other transition metal ions. Their fluorescent enhancement is observed in the presence of Fe(2+) because of the ring-open interactions of spirocyclic. All measurements are made in PBS buffer environments simulating biological conditions to make them suitable candidates for fluorescent labeling of biological systems. Confocal laser scanning microscopy experiments have proven that probe can be used to monitor Fe(2+) in living cells.


Assuntos
Corantes Fluorescentes/química , Ferro/química , Rodaminas/química , Animais , Cátions Bivalentes , Linhagem Celular Tumoral , Corantes Fluorescentes/síntese química , Concentração de Íons de Hidrogênio , Ferro/metabolismo , Camundongos , Microscopia Confocal , Microscopia de Fluorescência , Rodaminas/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...