Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 185(Pt B): 114363, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36427374

RESUMO

Marine litter can affect the survival of the breeding population in seabird colonies. In this study, five 5 m × 5 m quadrats were installed at a Black-tailed gull (Larus crassirostris) breeding colony on Nan Island to collect marine litter and regurgitated pellets, from which the types, sizes, and quantities of marine litter were identified. Global positioning system (GPS) devices were attached to five adult gulls to investigate their major foraging habitats during the breeding period. Eighty-two pieces of marine litter were found, of which 74.4 % were related to fishing; all pellets contained fishing-related marine litter. Over half of the foraging habitats included fishing areas (ports and fish farms). This study is the first to quantitatively demonstrate the exposure of breeding colonies of Black-tailed gulls, the most dominant Korean seabird, to marine litter pollution during the breeding period; the birds forage predominantly in fishing areas close to their breeding colonies during this period.


Assuntos
Charadriiformes , Animais , Poluição Ambiental , Pesqueiros , República da Coreia , Ecossistema
2.
Transbound Emerg Dis ; 69(5): e3128-e3140, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35894239

RESUMO

Previous studies and efforts to prevent and manage avian influenza (AI) outbreaks have mainly focused on the wintering season. However, outbreaks of AI have been reported in the summer, including the breeding season of waterfowl. Additionally, the spatial distribution of waterfowl can easily change during the annual cycle due to their life-cycle traits and the presence of both migrants and residents in the population. Thus, we assessed the spatiotemporal variation in AI exposure risk in poultry due to spatial distribution changes in three duck species included in both major residents and wintering migrants in South Korea, the mandarin, mallard and spot-billed duck, during wintering (October-March), breeding (April-June) and whole annual seasons. To estimate seasonal ecological niche variations among the three duck species, we applied pairwise ecological niche analysis using the Pianka index. Subsequently, seasonal distribution models were projected by overlaying the monthly ranges estimated by the maximum entropy model. Finally, we overlaid each seasonal distribution range onto a poultry distribution map of South Korea. We found that the mandarin had less niche overlap with the mallard and spot-billed duck during the wintering season than during the breeding season, whereas the mallard had less niche overlap with the mandarin and spot-billed duck during the breeding season than during the wintering season. Breeding and annual distribution ranges of the mandarin and spot-billed duck, but not the mallard, were similar or even wider than their wintering ranges. Similarly, the mandarin and spot-billed duck showed more extensive overlap proportions between poultry and their distributional ranges during both the breeding and annual seasons than during the wintering season. These results suggest that potential AI exposure in poultry can occur more widely in the summer than in winter, depending on sympatry with the host duck species. Future studies considering the population density and variable pathogenicity of AI are required.


Assuntos
Influenza Aviária , Animais , Patos , Fazendas , Influenza Aviária/epidemiologia , Aves Domésticas , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA