Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 60(39): 5177-5180, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38647014

RESUMO

A vertically-stacked MXene/rGO composite membrane with ultrashort transport channels is reported here, which demonstrated outstanding molecular sieving, i.e., H2/CO2 selectivity of up to 83 together with high H2 permeance of 2.7 × 10-7 mol m-2 s-1 Pa-1 at 120 °C, highlighting its applicability for H2/CO2 separation in CO2 capture and sequestration.

2.
ACS Appl Mater Interfaces ; 15(41): 48519-48528, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37801394

RESUMO

The unique layered structure and high conductivity of MXene materials make them highly promising for microwave absorption. However, the finite loss mechanism and severe agglomeration present challenging obstacles for ideal microwave absorbers, which could be effectively improved by constructing a three-dimensional (3D) porous structure. This study reports a 3D honeycomb MXene using a straightforward template method. The 3D MXene framework offers ample cavities to anchor the Prussian blue microcubes and their derivatives including Fe microboxes and Fe clusters by a simple annealing process. Based on the superiority of the 3D honeycomb architecture and magnetic-dielectric synergistic effects, the Fe/MXene absorbers demonstrate outstanding microwave absorption capabilities with the optimum reflection loss value of -40.3 dB at 2.00 mm in the low-frequency range from 4.2 to 5.6 GHz. The absorber also manifests superior radar wave attenuation by finite element analysis and exhibits great potential to be a flexible and thermal insulation material in a wide range of temperatures. This work proposes a useful reference for the design of 3D MXene-based porous architectures, and the synergistic magnetic-dielectric strategy further expands the potential of MXene-based absorbers, enabling them to be used as flexible and highly efficient microwave absorbers.

3.
Nanoscale ; 14(39): 14508-14519, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36156672

RESUMO

Although the rapid advances of wireless technologies and electronic devices largely improve the quality of life, electromagnetic (EM) pollution increases the risk of exposure to EM radiation. Developing high-efficiency absorbers with a rational structure and wideband characteristics is of great significance to eliminate radiation pollution. Herein, Enteromorpha prolifera derived biochar which would provide a suitable surface and multiple polarizations has been prepared as the supporter to anchor nanoparticles. In addition, theoretical simulation results further confirm that radar wave scattering could be largely inhibited after coating with absorbing materials. As a result, the hybrid absorbers achieve remarkable EM absorption properties attributed to the synergistic magnetic-dielectric loss. Elaborate compositional and structural characterization studies indicate that the absorber has a large specific area and numerous polarization centers, which would make full use of waste biomass as light weight and broadband high-performance EM absorption materials.


Assuntos
Qualidade de Vida , Ulva , Carvão Vegetal/química , Fenômenos Eletromagnéticos , Ulva/química
4.
Membranes (Basel) ; 12(2)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35207112

RESUMO

Catalytic dehydrogenation coupling of methane (DCM) represents an effective way to convert natural gas to more useful C2 products (C2H6, C2H4). In this work, BaCe0.85Tb0.05Co0.1O3-δ (BCTCo) perovskite hollow fiber membranes were fabricated by the combined phase inversion and sintering method. SrCe0.95Yb0.05O3-δ (SCYb) perovskite oxide was loaded as a catalyst onto the inner hollow fiber membrane surface, which promoted the CH4 conversion and the C2 hydrocarbon selectivity during the DCM reaction. The introduction of steam into the methane feed gas mixture elevated the C2 selectivity and yield due to the alleviation of coke deposition. Switching N2 to air as the sweep gas further increased the C2 selectivity and yield. However, the conversion of methane was limited by both the low permeability of the membrane and the insufficient catalytic activity of the catalyst, leading to low C2 yield.

5.
Nanotechnology ; 33(21)2022 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-35105828

RESUMO

Biomass-derived carbon materials have received a surge of scientific attention to develop lightweight and broadband microwave absorbers. Herein, rodlike porous carbon materials derived from cotton have been fabricated with uniformly dispersed CoFe2O4nanoparticles via facile and scalable process. The combination of magnetic particles and carbonaceous material is advantageous to realize the magnetic-dielectric synergistic effect which could effectively promote the dissipation of incident waves, giving rise to an optimal reflection loss value of -48.2 dB over a qualified bandwidth (4.8 GHz) at 2.5 mm. The cotton-derived carbon rods with conductive network not only act as a supporter to carry the CoFe2O4nanoparticles, but also provide massive heterointerfaces to facilitate the interfacial polarization. In consideration of the renewable and abundant resource of cotton, the as-prepared CoFe2O4/C composites would meet the increasing demand of lightweight and highly efficient microwave absorbers.

6.
ACS Appl Mater Interfaces ; 13(15): 17726-17735, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33821614

RESUMO

Constructing a rational electrode structure for supercapacitors is critical to accelerate the electrochemical kinetics process and thus promote the capacitance. Focusing on the flexible supercapacitor electrode, we synthesized a three-dimensional (3D) porous polypyrrole (PPy) film using a modified vapor phase polymerization method with the use of a porous template (CaCO3). The porous design provided the PPy film with an improved surface area and pore volume. The porous PPy film electrode was studied as a binder-free electrode for supercapacitors. It was found that the abundant interpenetrated pores created by the CaCO3 templates within the 3D framework are beneficial to overcoming the diffusion-controlled limit in the overall electrochemical process. It was revealed by electrochemical investigation that a more pseudocapacitive contribution than diffusion-controlled process contribution was observed in the total charge in the redox reaction. The galvanostatic charge/discharge (GCD) measurements showed that the optimized 3D porous PPy film electrode delivered a high capacitance of 313.6 F g-1 and an areal capacitance of 98.0 mF cm-2 at 1.0 A g-1 in a three-electrode configuration, which is nearly three times that of the dense counterpart electrode synthesized in the absence of the CaCO3 template. A specific capacitance of 62.5 F g-1 at 0.5 A g-1 and 31.1 F g-1 at 10 A g-1 was obtained in a symmetric capacitor device. In addition, the porous structure provided the PPy film with the attractive capability of accommodating the volume change during the doping/dedoping process. This is essential for the PPy film to maintain a long cycling life in a practical operation for a supercapacitor. It turned out that a high capacitance retention up to 81.3% after 10,000 GCD cycles was obtained for the symmetric supercapacitor device with the 3D porous PPy electrode (57.1% capacitive retention was observed for the dense PPy electrode). The strategy and the insight analysis are expected to provide valuable guidance for the design and the synthesis of flexible and wearable film electrodes with high performance.

7.
ACS Appl Mater Interfaces ; 13(1): 503-513, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33372775

RESUMO

Heterogeneous electrocatalytic reactions only occur at the interface between the electrocatalyst and reactant. Therefore, the active sites are only necessary to be distributed on the surface of the electrocatalyst. Based on this motivation, here, we demonstrate a systematic study on surface tuning for a carbon-based electrocatalyst from metal-free (with the heteroatoms N and S, NS/C) to metal-containing surfaces (with Co, N, and S, CoNS/C). The CoNS/C electrocatalyst was obtained by pyrolyzing the Co precoordinated and p-toluenesulfonate-doped polypyrrole (PPy). It was found that the coordination of Co on the PPy ring tuned the final carbon electrocatalyst into a catalyst with a CoNx moiety-rich surface. In addition, the as-synthesized CoNS/C was determined to have a very high loading of cobalt up to 2.02 wt %. The pyrolysis of the cobalt-containing precursor tends to proceed toward a characteristic of a higher sp2 carbon content, a higher surface area, and more nitrogen as well as active nitrogen sites than its metal-free counterpart. The most distinguished feature for such a catalyst is that the truly most active component is only distributed on the surface, in contrast with that of the conventional metal-N-based catalyst present throughout the bulky structure. Especially, the electrocatalytic activity toward oxygen evolution reaction (OER) has been investigated experimentally and theoretically. The results showed that the OER performance of the carbon-based electrocatalyst was remarkably boosted after the introduction of Co with an overpotential decrease from 678 to 345 mV at 10 mA cm-2. Furthermore, CoNS/C displayed an excellent durability upon a long-term measurement. The apparent activation energy measurements revealed that the metal-rich surface contributed to overcome the energy barrier for OER. In addition, density functional theory calculations have been conducted to explain the correlated OER mechanism. This study is expected to provide an effective strategy for the design and the synthesis of highly active metal-nitrogen-type electrocatalysts with a high metal loading for various electrocatalytic reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...