Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 40(13): 7049-7059, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38520349

RESUMO

In this study, the gas-sensitive response of metal (Ag, Au, Pt)-modified SnS2 toward SF6 decomposition gases (SOF2, SO2F2, SO2, H2S) in gas-insulated switchgear was studied by analyzing the adsorption structure, band structure, charge transfer, and density of states based on density functional theory. The results show that the adsorption of the four target gases on pristine SnS2 belongs to weak physical adsorption. Compared with the pristine SnS2, the adsorption energy of the transition metal atom-modified SnS2 monolayer has been improved to a certain extent and the adsorption capacity of these four gases on the transition metal atom-modified SnS2 monolayer has obviously improved. Moreover, the recovery time of Ag-SnS2/SOF2, Ag-SnS2/SO2F2, Au-SnS2/SOF2, Au-SnS2/SO2F2, and Pt-SnS2/SO2F2 is too short, indicating that these conditions have poor adsorption capacity and sensitivity to SF6 decomposition gases and are not suitable as detection materials for these gases. According to the different changes in conductivity during adsorption, it provides a feasible solution to detect each SF6 decomposition gas. This theoretical study effectively explained the adsorption and sensing properties between the metal-modified monolayers and gases.

2.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685836

RESUMO

Flexible strain sensors for multi-directional strain detection are crucial in complicated hman-computer interaction (HCI) applications. However, enhancing the anisotropy and sensitivity of the sensors for multi-directional detection in a simple and effective method remains a significant issue. Therefore, this study proposes a flexible strain sensor with anisotropy and high sensitivity based on a high-aspect-ratio V-groove array and a hybrid conductive network of iron nanowires and carbon nanotubes (Fe NWs/CNTs). The sensor exhibits significant anisotropy, with a difference in strain detection sensitivity of up to 35.92 times between two mutually perpendicular directions. Furthermore, the dynamic performance of the sensor shows a good response rate, ranging from 223 ms to 333 ms. The sensor maintains stability and consistent performance even after undergoing 1000 testing cycles. Additionally, the constructed flexible strain sensor is tested using the remote control application of a trolley, demonstrating its high potential for usage in practical HCI systems. This research offers a significant competitive advantage in the development of flexible strain sensors in the field of HCI.


Assuntos
Nanotubos de Carbono , Nanofios , Humanos , Anisotropia , Ferro , Computadores
3.
Int J Mol Sci ; 24(10)2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37239958

RESUMO

In this study, we successfully prepared core-shell heterostructured nanocomposites (Fe NWs@SiO2), with ferromagnetic nanowires (Fe NWs) as the core and silica (SiO2) as the shell. The composites exhibited enhanced electromagnetic wave absorption and oxidation resistance and were synthesized using a simple liquid-phase hydrolysis reaction. We tested and analyzed the microwave absorption properties of Fe NWs@SiO2 composites with varied filling rates (mass fractions of 10 wt%, 30 wt%, and 50 wt% after mixing with paraffin). The results showed that the sample filled with 50 wt% had the best comprehensive performance. At the matching thickness of 7.25 mm, the minimum reflection loss (RLmin) could reach -54.88 dB at 13.52 GHz and the effective absorption bandwidth (EAB, RL < -10 dB) could reach 2.88 GHz in the range of 8.96-17.12 GHz. Enhanced microwave absorption performance of the core-shell structured Fe NWs@SiO2 composites could be attributed to the magnetic loss of the composite, the core-shell heterogeneous interface polarization effect, and the small-scale effect induced by the one-dimensional structure. Theoretically, this research provided Fe NWs@SiO2 composites with highly absorbent and antioxidant core-shell structures for future practical applications.


Assuntos
Nanofios , Dióxido de Silício , Absorção de Radiação , Ferro , Micro-Ondas
4.
J Colloid Interface Sci ; 646: 991-1001, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37245268

RESUMO

It is a novel and practical method to use natural porous biomaterials as microwave absorber. In this study, NixCo1S nanowires (NWs)@diatomite (De) composites with one-dimensional (1D)-NWs and three-dimensional(3D)-De composites were prepared by a two-step hydrothermal method using De as template. The effective absorption bandwidth (EAB) of the composite reaches 6.16 GHz at 1.6 mm and 7.04 GHz at 4.1 mm, covering the entire Ku band, and the minimum reflection loss (RLmin) is less than -30 dB. The excellent absorption performance is mainly due to the bulk charge modulation provided by the 1D NWs and the extended microwave transmission path within the absorber, coupled with the high dielectric loss and magnetic loss of the metal-NWS after vulcanization. We present a high-value method that combines vulcanized 1D materials with abundant De to achieve the lightweight broadband efficient microwave absorption at the first time.

5.
Int J Mol Sci ; 23(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36555632

RESUMO

Flexible polymer-based magnetoelectric (ME) materials have broad application prospects and are considered as a new research field. In this article, FeCoSiB thin films were deposited on poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) substrate by DC magnetron sputtering. The structure of PVDF-TrFE/FeCoSiB heterostructure thin films was similar to 2-2. Under a bias magnetic field of 70 Oe, the composites have a dramatically increased ME voltage coefficient as high as 111 V/cm⋅Oe at a frequency of about 85 kHz. The piezoelectric coefficient of PVDF-TrFE thin films is 34.87 pC/N. The surface morphology of PVDF-TrFE thin films were studied by FESEM, and the results of XRD and FTIR showed that the ß-phase of PVDF-TrFE thin films was dominant. Meanwhile, the effects of different heating conditions on the crystallization and piezoelectric properties of PVDF-TrFE films were also studied. The flexible ME heterojunction composite has a significant ME voltage coefficient and excellent piezoelectric properties at room temperature, which allows it to be a candidate material for developing flexible magnetoelectric devices.


Assuntos
Polímeros de Fluorcarboneto , Calefação , Cristalização
6.
Sensors (Basel) ; 22(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36298177

RESUMO

The stable operation of climbing robots exposed to high winds is of great significance for the health-monitoring of structures. This study proposes an anole lizard-like climbing robot inspired by its superior wind resistance. First, the stability mechanism of the anole lizard body in adhesion and desorption is investigated by developing adhesion and desorption models, respectively. Then, the hypothesis that the anole lizard improves its adhesion and stability performance through abdominal adjustment and trunk swing is tested by developing a simplified body model and kinematic model. After that, the structures of the toe, limb, and multi-stage flexible torso of the anole lizard-like climbing robot are designed. Subsequently, the aerodynamic behavior of the proposed robot under high-speed airflow are investigated using finite element analysis. The results show that when there is no obstacle, the climbing robot generates the normal force to enhance toepad friction and adhesion by tuning the abdomen's shape to create an air pressure difference between the back and abdomen. When there is an obstacle, a component force is obtained through periodic oscillation of the spine and tail to resist the frontal winds resulting from the vortex paths generated by the airflow behind the obstacle. These results confirm that the proposed hypothesis is correct. Finally, the adhesion and wind resistance performance of the anole lizard-like climbing robot is tested through the developed experimental platform. It is found that the adhesion force is equal to 50 N when the pre-pressure is 20 N. Further, it is shown that the normal pressure of the proposed robot can reach 76.6% of its weight in a high wind of 14 m/s.


Assuntos
Lagartos , Animais , Vento , Fenômenos Biomecânicos , Extremidades
7.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012160

RESUMO

With the rapid development of wearable smart electronic products, high-performance wearable flexible strain sensors are urgently needed. In this paper, a flexible strain sensor device with Fe NWs/Graphene/PEDOT:PSS material added under a porous structure was designed and prepared. The effects of adding different sensing materials and a different number of dips with PEDOT:PSS on the device performance were investigated. The experiments show that the flexible strain sensor obtained by using Fe NWs, graphene, and PEDOT:PSS composite is dipped in polyurethane foam once and vacuum dried in turn with a local linearity of 98.8%, and the device was stable up to 3500 times at 80% strain. The high linearity and good stability are based on the three-dimensional network structure of polyurethane foam, combined with the excellent electrical conductivity of Fe NWs, the bridging and passivation effects of graphene, and the stabilization effect of PEDOT:PSS, which force the graphene-coated Fe NWs to adhere to the porous skeleton under the action of PEDOT:PSS to form a stable three-dimensional conductive network. Flexible strain sensor devices can be applied to smart robots and other fields and show broad application prospects in intelligent wearable devices.


Assuntos
Grafite , Compostos Bicíclicos Heterocíclicos com Pontes/química , Grafite/química , Polímeros/química , Porosidade
8.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012621

RESUMO

A neoteric round sieve diatomite (De) decorated with sea-urchin-like alpha-type iron trioxide (α-Fe2O3) synthetics was prepared by the hydrothermal method and further calcination. The results of the electromagnetic (EM) parameters of α-Fe2O3-decorated De (α-Fe2O3@D) showed that the minimum reflection loss (RLmin) of α-Fe2O3@D could reach -54.2 dB at 11.52 GHz and the matched absorber thickness was 3 mm. The frequency bandwidth corresponding to the microwave RL value below -20 dB was up to 8.24 GHz (9.76-18 GHz). This indicates that α-Fe2O3@D composite can be a lightweight and stable material; because of the low density of De (1.9-2.3 g/cm3), the density of α-Fe2O3@D composite material is lower than that of α-Fe2O3 (5.18 g/cm3). We found that the combination of the magnetic loss of sea-urchin-like α-Fe2O3 and the dielectric loss of De has the most dominant role in electromagnetic wave absorption and loss. We focused on comparing the absorbing properties before and after the formation of sea-urchin-like α-Fe2O3 and explain in detail the effects of the structure and crystal shape of this novel composite on the absorbing properties.


Assuntos
Micro-Ondas , Terra de Diatomáceas
9.
Molecules ; 27(15)2022 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-35897893

RESUMO

Flexible strain sensors, when considering high sensitivity and a large strain range, have become a key requirement for current robotic applications. However, it is still a thorny issue to take both factors into consideration at the same time. Here, we report a sandwich-structured strain sensor based on Fe nanowires (Fe NWs) that has a high GF (37-53) while taking into account a large strain range (15-57.5%), low hysteresis (2.45%), stability, and low cost with an areal density of Fe NWs of 4.4 mg/cm2. Additionally, the relationship between the contact point of the conductive network, the output resistance, and the areal density of the sensing unit is analyzed. Microscopically, the contact points of the conductive network directly affect the sensor output resistance distribution, thereby affecting the gauge factor (GF) of the sensor. Macroscopically, the areal density and the output resistivity of the strain sensor have the opposite percolation theory, which affects its linearity performance. At the same time, there is a positive correlation between the areal density and the contact point: when the stretching amount is constant, it theoretically shows that the areal density affects the GF. When the areal density reaches this percolation threshold range, the sensing performance is the best. This will lay the foundation for rapid applications in wearable robots.

10.
Molecules ; 27(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897949

RESUMO

Reasonable structural design and composition control are the dominant factors for tuning the electromagnetic absorbing properties of materials. In this paper, microspheres composed of NiO, Ni, and Co3O4 nanoparticles (NCMO) were successfully synthesized using a mild oxidation method. Benefiting from the multi-component composition and a unique microstructure, the RLmin of CNMO can reach -46.8 dB at 17 GHz, with an effective absorption bandwidth of 4.1 GHz (13.9-18 GHz). The absorbing properties and the absorbing mechanism analysis showed that the microsphere-structured NCMO composed of multi-component nanoparticles enhanced the interface polarization, thereby improving the absorption performance. This research provides a new avenue for MOF-derived oxide materials with excellent electromagnetic wave absorbing properties.

11.
Molecules ; 27(13)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35807363

RESUMO

With the rapid development of communication technology in civil and military fields, the problem of electromagnetic radiation pollution caused by the electromagnetic wave becomes particularly prominent and brings great harm. It is urgent to explore efficient electromagnetic wave absorption materials to solve the problem of electromagnetic radiation pollution. Therefore, various absorbing materials have developed rapidly. Among them, iron (Fe) magnetic absorbent particle material with superior magnetic properties, high Snoek's cut-off frequency, saturation magnetization and Curie temperature, which shows excellent electromagnetic wave loss ability, are kinds of promising absorbing material. However, ferromagnetic particles have the disadvantages of poor impedance matching, easy oxidation, high density, and strong skin effect. In general, the two strategies of morphological structure design and multi-component material composite are utilized to improve the microwave absorption performance of Fe-based magnetic absorbent. Therefore, Fe-based microwave absorbing materials have been widely studied in microwave absorption. In this review, through the summary of the reports on Fe-based electromagnetic absorbing materials in recent years, the research progress of Fe-based absorbing materials is reviewed, and the preparation methods, absorbing properties and absorbing mechanisms of iron-based absorbing materials are discussed in detail from the aspects of different morphologies of Fe and Fe-based composite absorbers. Meanwhile, the future development direction of Fe-based absorbing materials is also prospected, providing a reference for the research and development of efficient electromagnetic wave absorbing materials with strong absorption performance, frequency bandwidth, light weight and thin thickness.

12.
Molecules ; 27(12)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35744883

RESUMO

Considering the electromagnetic protection needs of important ground buildings, exploring the electromagnetic wave (EMW) absorption performance of manganese ore powder (MOP) building materials is an effective way to overcome its low added value and difficulty in popularizing. Here, choosing filling ratios commonly used in building materials such as autoclaved bricks, MOP/paraffin samples with 20%, 40%, and 60% mass fraction of MOP were prepared, and electromagnetic properties were analyzed at 2−18 GHz using the coaxial method. The results show that 60 wt% sample has the best absorption performance, with a minimum reflection loss (RLmin) value of −22.06 dB at 15.04 GHz, and the effective absorption bandwidth (EAB, RL < −10 dB) reaches 4.16 GHz at a 7.65 mm absorber thickness, covering most of the Ku-band region. The excellent microwave absorption performance of MOP is due to its multi-oxide forming multi-interface structure and rough surface, which can not only form abundant dipole and interfacial polarization under the action of EMW, but also reflect and scatter the incident EMW, prolong the transmission path, and enhanced the absorption of microwaves. This study demonstrates that MOP building materials can have excellent microwave absorption properties, thus becoming a new way to address harmful manganese residue; for example, autoclaved bricks, which can not only improve the added value of manganese residue building materials but also can be consumed on a large scale. It provides a new idea to solve the harm of manganese residue.


Assuntos
Manganês , Micro-Ondas , Pós , Dióxido de Silício
13.
Molecules ; 27(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35164331

RESUMO

The porous and biomimetic cobalt silicate@diatomite (Co2SiO4@diatomite) was successfully synthesized by a two-step method, including the hydrothermal method and calcination to improve the electromagnetic wave absorption property. Different hydrothermal times were well-tuned for Co2SiO4@diatomite composites with different loadings of Co2SiO4. Interestingly, the Co2SiO4@diatomite composites (6 h, 25 wt%) had a smaller minimum reflection loss. Moreover, the minimum reflection loss (RLmin) could reach -12.03 dB at 16.64 GHz and the matched absorber thickness was 10 mm, while the effective absorption bandwidth (EAB, RL ≤ -10 dB) could be 1.92 GHz. In principle, such findings indicate that Co2SiO4@diatomite nanocomposites could be a promising candidate for high-efficiency microwave absorption capability.

14.
Front Nutr ; 9: 1083872, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590223

RESUMO

Background: Fluorescent advanced glycation end products (fAGEs) are generated through the Maillard reaction between reducing sugars and amino compounds. fAGEs accumulation in human bodies have been confirmed to be related to many chronic diseases. To date, the correlations between serum fAGEs levels and clinical parameters or carotid intima media thickness (CIMT) in patients with T2DM remain unclear. Thus, this study aimed to investigate the relationship between serum AGEs levels and clinical parameters or CIMT in patients with T2DM. Method: A total of 131 patients with diabetes and 30 healthy controls were enrolled. Patients were divided into three groups according to diabetes duration, including ≤5, 5-10, and ≥10 years. Serum fAGEs, protein oxidation products, clinical parameters, and CIMT were determined. Results: The result showed that levels of fAGEs and protein oxidation products increased with the increasing duration of diabetics. Pearson correlation coefficients of fAGEs versus hemoglobin A1c (HbA1c) were >0.5 in patients with diabetes duration ≥10 years. A continued increase in fAGEs might cause the increase of HbA1c, urinary albumin/creatinine ratio (UACR) and CIMT in patients with T2DM. Conclusion: Our study suggested that levels of fAGEs could be considered as an indicator for duration of diabetics and carotid atherosclerosis. Diabetes duration and smoking might have a synergistic effect on the increment of fAGEs levels, as evidence by the results of correlation analysis in patients with long-duration diabetics (≥10 years) and smoking. The determination of fAGEs might be helpful to advance our knowledge on the overall risk of complications in patients with T2DM.

15.
Int J Mol Sci ; 24(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36613944

RESUMO

In this work, a novel core-shell structure material, NiFe layered double hydroxide (NiFe LDH) loaded on SiO2 microspheres (SiO2@NiFe LDH), was synthesized by a one-step hydrothermal method, and the spontaneous electrostatic self-assembly process. The morphology, structure, and microwave absorption properties of SiO2@NiFe LDH nanocomposites with different NiFe element ratios were systematically investigated. The results show that the sample of SiO2@NiFe LDH-3 nanocomposite has excellent microwave absorption properties. It exhibits broadband effective absorption bandwidth (RL < −10 dB) of 8.24 GHz (from 9.76 GHz to 18.0 GHz) and the reflection loss is −53.78 dB at the matched thickness of 6.95 mm. It is expected that this SiO2@NiFe-LDH core-shell structural material can be used as a promising non-precious, metal-based material microwave absorber to eliminate electromagnetic wave contamination.


Assuntos
Absorção de Radiação , Dióxido de Silício , Contaminação de Medicamentos , Microesferas , Micro-Ondas
16.
Molecules ; 28(1)2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36615427

RESUMO

Recently, the development of composite materials composed of magnetic materials and MXene has attracted significant attention. However, the thickness and microwave absorption performance of the composite is still barely satisfactory. In this work, the C-N@NiFe2O4@MXene/Ni nanocomposites were successfully synthesized in situ by hydrothermal and calcination methods. Benefiting from the introduction of the carbon-nitrogen(C-N) network structure, the overall dielectric properties are improved effectively, consequently reducing the thickness of the composite while maintaining excellent absorption performance. As a result, the minimum reflection loss of C-N@NiFe2O4@MXene/Ni can reach -50.51 dB at 17.3 GHz at an ultralow thickness of 1.5 mm, with an effective absorption bandwidth of 4.95 GHz (13.02-18 GHz). This research provides a novel strategy for materials to maintain good absorption performance at an ultralow thickness level.

17.
Molecules ; 26(16)2021 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34443634

RESUMO

Microwave-absorbing materials have attracted increased research interest in recent years because of their core roles in the fields of electromagnetic (EM) pollution precaution and information security. In this paper, microwave-absorbing material NiFe-layered double hydroxide (NiFe-LDH) was synthesized by a simple co-precipitation method and calcined for the fabrication of NiFe-mixed metal oxide (NiFe-MMO). The phase structure and micromorphology of the NiFe-LDH and NiFe-MMO were analyzed, and their microwave-absorbing properties were investigated with a vector network analyzer in 2-18 GHz. Both NiFe-LDH and NiFe-MMO possessed abundant interfaces and a low dielectric constant, which were beneficial to electromagnetic wave absorption, owing to the synergistic effect of multi-relaxation and impedance matching. The optimum reflection loss (RL) of NiFe-LDH and NiFe-MMO was -58.8 dB and -64.4 dB, respectively, with the thickness of 4.0 mm in the C band. This work demonstrates that LDH-based materials have a potential application in electromagnetic wave absorption.

18.
Molecules ; 27(1)2021 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-35011367

RESUMO

In this work, spherical flower-shaped composite carbonyl iron powder@MnO2 (CIP@MnO2) with CIP as the core and ultrathin MnO2 nanosheets as the shell was successfully prepared by a simple redox reaction to improve oxidation resistance and electromagnetic wave absorption properties. The microwave-absorbing properties of CIP@MnO2 composites with different filling ratios (mass fractions of 20%, 40%, and 60% after mixing with paraffin) were tested and analyzed. The experimental results show that compared with pure CIP, the CIP@MnO2 composites have smaller minimum reflection loss and a wider effective absorption bandwidth than CIP (RL < -20 dB). The sample filled with 40 wt% has the best comprehensive performance, the minimum reflection loss is -63.87 dB at 6.32 GHz, and the effective absorption bandwidth (RL < -20 dB) reaches 7.28 GHz in the range of 5.92 GHz-9.28 GHz and 11.2 GHz-15.12 GHz, which covers most C and X bands. Such excellent microwave absorption performance of the spherical flower-like CIP@MnO2 composites is attributed to the combined effect of multiple beneficial components and the electromagnetic attenuation ability generated by the special spherical flower-like structure. Furthermore, this spherical flower-like core-shell shape aids in the creation of discontinuous networks, which improve microwave incidence dispersion, polarize more interfacial charges, and allow electromagnetic wave absorption. In theory, this research could lead to a simple and efficient process for producing spherical flower-shaped CIP@MnO2 composites with high absorption, a wide band, and oxidation resistance for a wide range of applications.

19.
Nanotechnology ; 31(39): 395708, 2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32544893

RESUMO

Reducing the filling content of high-density ferromagnetic particles is a key prerequisite for obtaining lightweight absorbers. To this end, large iron nanowires (Fe NWs) with high length-diameters, uniform length of approximately 21 µm and diameters of approximately 60 nm were synthesized through a facile magnetic field-induced in situ reduction method without templates and surfactants. The phase structures, and micromorphology of the high-aspect-ratio Fe NWs were analyzed, and the electromagnetic properties of Fe NWs-paraffin composites were measured with a vector network analyzer at 2-18 GHz. The Fe NWs-paraffin composite with a low filler loading also exhibited satisfactory microwave absorption performance, and the composites filled with 20 wt.% of as-prepared Fe NWs shows a minimum reflection loss (RLmin) of -44.67 dB at 2.72 GHz and effective absorption bandwidth (EAB) with reflection loss below -10 dB reached 8.56 GHz at a layer thickness of 1.42 mm. At a thickness of 3 mm, the RLmin value and EAB (RL ⩽ -10 dB) reached -29.74 dB and 3.28 GHz (3.84-7.12 GHz), respectively. This study suggests that Fe NWs with high-aspect-ratios have promising microwave absorbing applications, and provides a good reference for the preparation of ferromagnetic metal-based lightweight electromagnetic wave-absorbing materials.

20.
Nanotechnology ; 31(14): 145601, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-31842005

RESUMO

High-performance iron nanowires have attracted wide attention from researchers due to their 'controllable' arrangement distribution by magnetic fields. In this paper, a simple magnetic field assisted in situ reduction method was proposed to synthesize Fe NWs with high aspect ratio, small-diameter, and good dispersion. A detailed parametric study determining the relationship among the final morphologies of the products and magnetic field, injection sequence of sodium borohydride that was injected into ferrous sulfate heptahydrate, reactant concentration, and injection rate is presented. The as-synthesized Fe NWs were analyzed by scanning electron microscopy, transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and vibrating sample magnetometry. A plausible mechanism for the formation of high-aspect-ratio Fe NWs is proposed. The SEM images showed the dependence of the NWs morphology and aspect ratio on synthesis parameters. Magnetic field and injection sequence showed considerable influences on the synthesis of high-aspect-ratio Fe NWs. In the absence of magnetic field or with the changes in injection sequence, only the Fe flakes were obtained. The NWs diameter decreased, and the aspect ratio increased with the increase in injection rate. The FeSO4·7H2O and NaBH4 concentration considerably influenced the aspect ratio of the product, which increased first, decreased, and then increased again with the increase in FeSO4·7H2O concentration. Meanwhile, the product aspect ratio increased and then became saturated with the increase in NaBH4 concentration Thus, an optimum synthesis process was obtained, with the average aspect ratio of 350, and the average diameter of 60 nm. The results reported in this paper provide a basis for optimizing the growth of Fe NWs by magnetic field-assisted method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...