Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zool Res ; 44(6): 1052-1063, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37872006

RESUMO

Widespread species that inhabit diverse environments possess large population sizes and exhibit a high capacity for environmental adaptation, thus enabling range expansion. In contrast, narrow-range species are confined to restricted geographical areas and are ecologically adapted to narrow environmental conditions, thus limiting their ability to expand into novel environments. However, the genomic mechanisms underlying the differentiation between closely related species with varying distribution ranges remain poorly understood. The Niviventer niviventer species complex (NNSC), consisting of highly abundant wild rats in Southeast Asia and China, offers an excellent opportunity to investigate these questions due to the presence of both widespread and narrow-range species that are phylogenetically closely related. In the present study, we combined ecological niche modeling with phylogenetic analysis, which suggested that sister species cannot be both widespread and dominant within the same geographical region. Moreover, by assessing heterozygosity, linkage disequilibrium decay, and Tajima's D analysis, we found that widespread species exhibited higher genetic diversity than narrow-range species. In addition, by exploring the "genomic islands of speciation", we identified 13 genes in highly divergent regions that were shared by the two widespread species, distinguishing them from their narrow-range counterparts. Functional annotation analysis indicated that these genes are involved in nervous system development and regulation. The adaptive evolution of these genes likely played an important role in the speciation of these widespread species.


Assuntos
Meio Ambiente , Murinae , Ratos , Animais , Filogenia , Murinae/genética , China , Genômica
3.
PLoS One ; 8(7): e70461, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23922995

RESUMO

The polymorphic genus Petaurista includes a group of diverse species and subspecies that are adapted for gliding and arboreal life. This morphological diversity has resulted in taxonomic discrepancies, and molecular phylogenetic studies have been limited by taxon sampling. To clarify this controversial taxonomy, we used the cytochrome b gene to reconstruct the phylogeny to obtain a more accurate picture of the evolutionary relationships, species differentiation and divergence pattern of Petaurista. The results revealed a significant inconsistency between taxonomic designations, phylogeny and genetic distances. When 6 recognized species were included, species delimitation revealed 15 putative species, a finding that warrants a comprehensive morphological diagnosis and a re-assessment of the species status. The validity of P. caniceps and P. marica was discussed. An estimation of the molecular divergence time demonstrated that the diversification and speciation of Petaurista began during the later Miocene and may have been affected by the uplifting of the Qinghai-Tibet plateau and subsequent climate change.


Assuntos
Citocromos b/genética , Filogenia , Sciuridae/genética , Animais , Citocromos b/classificação , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...