Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(11)2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35683328

RESUMO

The dynamic recrystallization (DRX) features and the evolution of the microstructure of a new hot isostatic pressed (HIPed) powder metallurgy (P/M) superalloy are investigated by hot-compression tests. The sensitivity of grain dimension and DRX behavior to deformation parameters is analyzed. The results reveal that the DRX features and grain-growth behavior are significantly affected by deformation conditions. The DRX process is promoted with a raised temperature/true strain or a reduced strain rate. However, the grains grow up rapidly at relatively high temperatures. At strain rates of o.1 s-1 and 1 s-1, a uniform microstructure and small grains are obtained. Due to the obvious differences in the DRX rate at various temperatures, the piecewise DRX kinetics equations are proposed to predict the DRX behavior. At the same time, a mathematical model for predicting the grain dimension and the grain growth behavior is established. To further analyze the DRX behavior and the changes in grain dimension, the hot deformation process is simulated. The developed grain-growth equation as well as the piecewise DRX kinetics equations are integrated into DEFORM software. The simulated DRX features are consistent with the test results, indicating that the proposed DRX kinetics equations and the established grain-growth model can be well used for describing the microstructure evolution. So, they are very useful for the practical hot forming of P/M superalloy parts.

2.
Materials (Basel) ; 14(17)2021 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-34501152

RESUMO

In this paper, the effects of an aging treatment on the corrosion resistance/mechanism of a tensile deformed Al-Cu-Mn-Fe-Zr alloy are investigated. The impedance magnitude and polarization resistance increase, while the corrosion current decreases with the increased aging time and temperature. The discontinuously-distributed precipitates and precipitation-free zone, which can cut the corrosion channels, appear at grain boundaries when the temperature is relatively high and the aging time is relatively long. They can improve the corrosion resistance. Additionally, the intergranular and pitting corrosion are the main mechanisms. The intergranular corrosion is likely to occur in an under-aged alloy. This is because the potential difference between the grain boundaries and grains is high, due to the segregation of Cu atoms. When the aging degree is increased, the grain boundary precipitates reduce the potential difference, and the intragranular precipitates make the surrounding matrix prone to dissolution. As such, the pitting corrosion is likely to occur in the over-aged alloys.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA