Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 443(Pt B): 130225, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36334572

RESUMO

Adsorption is a promising technology for simultaneously capturing nitrogen oxides (NOx) from flue gases and recycling NO2 as a profitable chemical, for which a robust and efficient adsorbent provides the key step for success in practical applications. This work reports the enhancement of NOx adsorption performances with less cost of desorption energy on Cu-ZSM-5 zeolites prepared by a facile and rapid (690 s) modification method, the incipient-wetness impregnation coupled with microwave drying (IM). In comparisons to H-ZSM-5, Na-ZSM-5 and conventionally liquid-phase ion-exchanged counterparts under sub-1000 ppm NOx feed concentrations and room temperature, the IM sample renders a record NOx adsorption capacity (qt,NOx) of 0.878 mmol/g from dry gas stream on zeolites, and an applicable qt,NOx of 0.1 mmol/g from wet gas stream with a proper copper loading (2.1 wt%). The temperature programmed desorption of NOx on the optimal IM sample saturated with NOx from wet gas stream exhibit primary peak temperature lower than reported Cu-ZSM-5 and significant NO2 proportion (72.6 %) in desorbed NOx. Deeper insights into advantageous NOx oxidative adsorption over the properly-loaded Cu-ZSM-5 in terms of diverse adsorbate states and competitiveness towards H2O were gained, showing IM method a promising sorbent improvement strategy for practical use.


Assuntos
Zeolitas , Adsorção , Dióxido de Nitrogênio , Óxidos de Nitrogênio , Gases
2.
ACS Omega ; 7(17): 14735-14745, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35557676

RESUMO

Pure nitrogen dioxide (NO2) has significant economic value and is widely used in many fields, for which condensation technology plays an important role in separation and purification. However, developing cost-effective NO2 condensers remains challenging due to the lack of precise theoretical guidelines and comprehensive understanding of NO2 condensation process. In this work, NO2 condensation at various inlet surface subcoolings, mole fractions of noncondensable gas (NCG), and Re numbers was studied with a visualization experimental system. The influential rules of each parameter on heat transfer coefficients (HTCs) and the NO2 condensate state as the coexistence of droplet, streamlet and film were revealed. A substantial underestimation of experimental data by the classical heat and mass transfer analogy (HMTA) model was quantified. The large discrepancy was found to originate from the uniqueness in heat transfer, mass transfer, and condensate state caused by NO2 dimerization during condensation. A modified HMTA model was developed considering the release heat of dimerization reaction and the promotion of mass transfer by an increased NO2 concentration gradient within the diffusion layer which contribute to improvements of HTCs by ∼6 and ∼49%, respectively. The correction of liquid film roughness regarding potential heterogeneity of dimerization was proposed as a function of the key parameters, contributing to the improvement of HTCs by ∼150%. An accurate theoretical formula for HTCs prediction within an error of ±25% was finally derived, providing the key step for success in practical applications.

3.
Langmuir ; 38(9): 2751-2762, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35192347

RESUMO

NO2 and SO2, as valuable chemical feedstock, are worth being recycled from flue gases. The separation of NO2 and SO2 is a key process step to enable practical deployment. This work proposes SO2 separation from NO2 using chabazite zeolite (SSZ-13) membranes and provides insights into the feasibility and advantages of this process using molecular simulation. Grand canonical ensemble Monte Carlo and equilibrium molecular dynamics methods were respectively adopted to simulate the adsorption equilibria and diffusion of SO2, NO2, and N2O4 on SSZ-13 at varying Si/Al (1, 5, 11, 71, +∞), temperatures (248-348 K), and pressures (0-100 kPa). The adsorption capacity and affinity (SO2 > N2O4 > NO2) demonstrated strong competitive adsorption of SO2 based on dual-site interactions and significant reduction in NO2 adsorption due to dimerization in the ternary gas mixture. The simulated order of diffusivity (NO2 > SO2 > N2O4) on SSZ-13 demonstrated rapid transport of NO2, strong temperature dependence of SO2 diffusion, and the impermeability of SSZ-13 to N2O4. The membrane permeability of each component was simulated, rendering a SO2/NO2 membrane separation factor of 26.34 which is much higher than adsorption equilibrium (6.9) and kinetic (2.2) counterparts. The key role of NO2-N2O4 dimerization in molecular sieving of SO2 from NO2 was addressed, providing a facile membrane separation strategy at room temperature.

4.
J Hazard Mater ; 407: 124380, 2021 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-33223311

RESUMO

Conventional flue gas nitrogen oxides (NOx) abatement technologies commonly convert NOx into harmless compounds, while less effort has been made to recycle NO2 as a profitable chemical in many industries. Towards this end, adsorption is a promising technology for which an advanced technique for NO2 desorption and efficient sorbent regeneration provides the key step for success in practical applications. This work reports a novel cyclic adsorption process for NOx removal with recycling of NO2 from iron-ore sintering flue gas of a steel plant. This process using self-prepared and validated pelletized Na-ZSM-5 zeolites as low-cost sorbents involves NOx catalytic adsorption and reversible desorption using multiple hot gas circulations (GC) within the enclosed fixed bed followed by scavenging and purge at mild conditions. In comparison to conventional cyclic processes, greater amount of recyclable NO2 was obtained, rendering the NOx recovery of >92% and the mean NO2 concentration of >2% significantly enriched from original 20 ppm in feed gas. A robust adsorption-desorption performance with appreciable NOx working capacity was achieved for up to 16 cycles. The key role of the segmentation of GC in boosting NOx regenerability was addressed, providing an economical three-tower strategy for continuous NO2 production for practical use.

5.
J Hazard Mater ; 386: 121928, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31884354

RESUMO

Adsorption as one of the most important air cleaning methods has been extensively applied during which the coexisting airborne nanoparticles (NPs) with sizes close to adsorbent pore sizes could inevitably influence gas adsorption processes. In this work, the influence of sub-20 nm NPs on toluene adsorption on ZSM-5 zeolites exchanged with different cations (Li+, Na+ and K+) were studied based on gas-and-particle coexisting adsorption/filtration tests. Affinities for both toluene and NPs on adsorbents follow Li-ZSM-5 > Na-ZSM-5 > K-ZSM-5 regarding the orders of charge density, pore size, and internal and external specific surface areas. The toluene adsorption was shown to be impaired by coexisting NPs from perspectives of thermodynamics and kinetics. For Li-ZSM-5, Na-ZSM-5 and K-ZSM-5, significant relative reductions of 10.4 %, 10.5 % and 16.0 % in toluene adsorption capacity at the lower feed concentration, and of 20.3 %, 15.2 % and 2.3 % in mass transfer coefficient at the higher feed concentration were observed, respectively. The influential mechanisms regarding competitiveness between toluene and NPs in interaction with cationic and porous surfaces were accordingly proposed, which are of practical significance for selecting robust adsorbents under realistic harsh air conditions.

6.
Int J Mol Sci ; 20(3)2019 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-30717495

RESUMO

The adsorption of three typical polycyclic aromatic hydrocarbons (PAHs), naphthalene, phenanthrene, and pyrene with different ring numbers, on a common mesoporous material (MCM-41) was simulated based on a well-validated model. The adsorption equilibriums (isotherms), states (angle distributions and density profiles), and interactions (radial distribution functions) of three PAHs within the mesopores were studied in detail. The results show that the simulated isotherms agreed with previous experimental results. Each of the PAHs with flat molecules showed an adsorption configuration that was parallel to the surface of the pore, in the following order according to the degree of arrangement: pyrene (Pyr) > phenanthrene (Phe) > naphthalene (Nap). In terms of the interaction forces, there were no hydrogen bonds or other strong polar forces between the PAHs and MCM-41, and the O⁻H bond on the adsorbent surface had a unique angle in relation to the PAH molecular plane. The polarities of different H atoms on the PAHs were roughly the same, while those of the C atoms on the PAHs decreased from the molecular centers to the edges. The increasing area of the π-electron plane on the PAHs with the increasing ring number could lead to stronger adsorption interactions, and thus a shorter distance between the adsorbate and the adsorbent.


Assuntos
Simulação por Computador , Modelos Moleculares , Naftalenos/química , Fenantrenos/química , Pirenos/química , Dióxido de Silício/química , Adsorção
7.
Langmuir ; 30(27): 8124-30, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24945746

RESUMO

Glow discharge plasma was successfully applied for effective removal of the organic template P-123 from SBA-15 ordered mesoporous silica at near-room-temperature (below 50 °C) and in a short operation time (2 h). The as-made SBA-15 treated with glow discharge exhibited a larger surface area of 1025 m(2) g(-1) with larger pores and microspore volume as compared with that of conventional calcination (550 °C and 5 h, 827 m(2) g(-1)). In addition to less structural shrinkage, the plasma-prepared SBA-15 showed significantly increased silanol density from 5.4 to 6.6-7.6 mmol g(-1), which led directly to higher amine loading from 1.8 to 3.0 mmol g(-1). Consequently, the plasma-treated sample showed 77% more CO2 capacity and 60% higher CO2/N2 selectivity than the conventionally treated sample at 0.15 bar and 25 °C. The advantage of using glow discharge plasma for low-temperature template removal for achieving enhanced performance for CO2 adsorption is clearly demonstrated.

8.
Environ Sci Technol ; 45(23): 10257-64, 2011 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-22029835

RESUMO

CO(2) capture from the atmosphere and concentration by cyclic adsorption-desorption processes are studied for the first time. New high microporosity materials, zeolite types Li-LSX and K-LSX, are compared to zeolite NaX and amine-grafted SBA-15 with low amine content. Breakthrough performance showed low silica type X (LSX) to have the most promise for application in dry conditions and capable of high space velocities of at least 63,000 h(-1), with minimal spreading of the CO(2) breakthrough curve. Amine-grafted silica was the only adsorbent able to operate in wet conditions, but at a lower space velocity of 1500 h(-1), due to slower uptake rates. The results illustrate that the uptake rate is as important as the equilibrium adsorbed amount in determining the cyclic process performance. Li-LSX was found to have double the capacity of zeolite NaX at atmospheric conditions, also higher than all other reported zeolites. It is further demonstrated that by using a combined temperature and vacuum swing cycle, the CO(2) concentration in the desorption product is >90% for all adsorbents in pellet form. This is the first report of such high CO(2) product concentrations from a single cycle, using atmospheric air.


Assuntos
Aminas/química , Dióxido de Carbono/química , Dióxido de Silício/química , Zeolitas/química
9.
Langmuir ; 26(14): 11963-71, 2010 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-20527946

RESUMO

Metal dispersion is a crucially important factor for hydrogen spillover storage on metal/carbon materials. For Pt on carbon (Pt/C), dispersion into nearly 2 nm clusters or nanoparticles is necessary to facilitate spillover. On an effective Pt/C spillover sorbent, temperature-programmed desorption (TPD) results reveal the highest hydrogen signal is from the high-energy Pt edges, steps or (110) surfaces, even though the (111) faces are more abundant. Previous theoretical studies showed the high-energy sites (including the 110 face) are by far the most preferred for effective splitting of hydrogen. These are in significantly smaller fractions for larger particles, and thus the larger particles are less efficient. In addition, the rate-limiting step for spillover on effective Pt/C is identified by the susceptibility to isotopic differences, first-order behavior and isolation from catalyzed H(2)/HD/D(2) equilibrium measurements; we conclude it is the spillover step or surface diffusion. We extended our analysis to a review of our previous work, spillover on metal organic frameworks (MOFs). This has been achieved by bridging a commercial H(2) dissociation catalyst (Pt/C) to MOFs, large enhancement factors (up to 8) were observed. Unlike Pt/C sorbents, sample-to-sample consistency in storage capacity on the bridged MOF samples is difficult to achieve. Inconsistency in the enhancements by spillover is shown; however, significant enhancement factors are still observed when samples are prepared and activated properly. Common pitfalls (and their consequences) in sample preparation for both Pt/C and bridged MOFs are discussed in detail.

10.
Langmuir ; 26(19): 15394-8, 2010 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-20225819

RESUMO

Recent studies have shown that using the hydrogen spillover phenomena is a promising approach for developing new materials for hydrogen storage at ambient temperature. However, the rates need to be improved. Significant catalytic effects on both spillover (i.e., adsorption) and reverse spillover (i.e., desorption) on Pt-doped carbon by TiF(3) were found. By doping 2 wt % TiF(3) on the Pt-doped Maxsorb (a superactivated carbon), both adsorption and desorption rates were significantly increased while the storage capacity decreased only slightly due to decreased surface areas. The effect of the heat treatment temperature (473 K vs 673 K) of the doped TiF(3) on its catalytic effects was also studied. XPS analyses showed that C-F bonds were formed upon heat treatment and that the amount of C-F bonds increased with the heat treatment temperature. The catalytic effects also increased with the heat treatment temperature, indicating that the catalytic mechanism possibly involved the formation of C-F bonds on the carbon edge sites. In addition, the issue of proper sample preparation of Pt/carbon was briefly addressed; missteps in metal doping and consequently poor metal dispersion will result in significantly diminished spillover enhancements (Stadie et al.).

11.
Environ Sci Technol ; 44(5): 1799-805, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20136123

RESUMO

Application of Fe-zeolites for urea-SCR of NO(x) in diesel engine is limited by catalyst deactivation with hydrocarbons. In this work, we investigated the effect of propene on the activity of Fe-ZSM-5 for selective catalytic reduction of NO(x) with ammonia (NH(3)-SCR), and proposed a deactivation mechanism of Fe(3+) active site blockage by propene residue. The NO conversion decreased in the presence of propene at various temperatures, while the effect was not significant when NO was replaced by NO(2) in the feed, especially at low temperatures (<300 degrees C). The surface area and pore volume were decreased due to carbonaceous deposition. The site blockage was mainly on Fe(3+) sites on which NO was to be oxidized to NO(2). The activity for NO oxidation to NO(2) was significantly inhibited on a propene poisoned catalyst below 400 degrees C. The adsorption of NH(3) on the Bronsted acid sites to form NH(4)(+) was not hindered even on the propene poisoned catalyst, and the amount of absorbed NH(3) was still abundant and enough to react with NO(2) to generate N(2). The hydrocarbon oxygenates such as formate, acetate, and containing nitrogen organic compounds were observed on catalyst surface, however, no graphitic carbonaceous deposit was formed.


Assuntos
Alcenos/intoxicação , Chuva Ácida , Amônia/química , Catálise , Compostos Férricos/química , Combustíveis Fósseis/análise , Gases/análise , Óxido Nítrico , Óxidos de Nitrogênio/química , Oxirredução , Quartzo , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica , Emissões de Veículos , Eliminação de Resíduos Líquidos , Zeolitas/química
12.
J Am Chem Soc ; 131(12): 4224-6, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19249821

RESUMO

A crucial bottleneck in developing a hydrogen economy is hydrogen storage. This is particularly true for transportation using hydrogen as the fuel for fuel cells. The U.S. Department of Energy has established specific R&D targets for on-board hydrogen storage. Among the most important targets are system gravimetric/volumetric capacities and charge/discharge rates. New sorbent materials based on hydrogen spillover have shown much promise recently. However, the rates of spillover are low and remain a major concern. Here it is shown that doping with 2 wt % TiCl(3) or VCl(3) can significantly increase the rates of both adsorption and desorption by spillover. Moreover, the small hysteresis loop in the hydrogen isotherms for the spillover system is eliminated upon doping with the metal salt. Both heats of adsorption and activation energies for spillover are decreased by doping with TiCl(3) or VCl(3). This result indicates that the binding energies between the spilled-over hydrogen and the sites on the carbon surface are decreased by doping.

13.
Rev Sci Instrum ; 79(6): 063906, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18601416

RESUMO

A volumetric apparatus to measure hydrogen adsorption and desorption at room temperature and up to 100 atm has been constructed and studied for accuracy, reproducibility, and stability. The design principles are presented and considerable attention to detail is given to examine the effects of diurnal temperature changes in the manifold and helium adsorption by carbon-based adsorbents during free volume measurement. A heuristic for helium correction is derived from a model with a basis in literature and verified through calculation of adsorbent density. Several materials with well-known hydrogen capacities are studied to examine reproducibility. The microporous carbon AX-21 is studied to examine the effects of pressure step size and approach to equilibrium caused by gas mixing and the Joule-Thomson effect. Hydrogen spillover on a hybrid material, Pt on templated carbon, is examined for several loadings of metal. Kinetics of both physisorption and spillover are compared via the diffusion time constant (D/R(2)) estimated by fitting models for pore and surface diffusion to time-dependent adsorption profiles. No concentration dependence was found for pore diffusion; however, the surface diffusion time constant was shown to decrease with respect to increasing hydrogen concentration.

14.
Langmuir ; 24(12): 6159-65, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18470999

RESUMO

A composite material comprising platinum nanoparticles supported on molecular sieve templated carbon was synthesized and found to adsorb 1.35 wt % hydrogen at 298 K and 100 atm. The isosteric heat of adsorption for the material at low coverage was approximately 14 kJ/mol, and it approached a value of 10.6 kJ/mol as coverage increased for pressures at and above 1 atm. The increase in capacity is attributed to spillover, which is observed with the use of isotopic tracer TPD. IRMOF-8 bridged to Pt/C, a material known to exhibit hydrogen spillover at room temperature, was also studied with the hydrogen-deuterium scrambling reaction for comparison. The isotherms were reversible. For desorption, sequential doses of H2 and D2 at room temperature and subsequent TPD yield product distributions that are strong indicators of the surface diffusion controlled reverse spillover process.

15.
Langmuir ; 23(26): 12937-44, 2007 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-18031071

RESUMO

Gas adsorption experiments have been carried out on a zinc benzenetribenzoate metal-organic framework material, MOF-177. Hydrogen adsorption on MOF-177 at 298 K and 10 MPa gives an adsorption capacity of approximately 0.62 wt %, which is among the highest hydrogen storage capacities reported in porous materials at ambient temperatures. The heats of adsorption for H2 on MOF-177 were -11.3 to -5.8 kJ/mol. By adding a H2 dissociating catalyst and using our bridge building technique to build carbon bridges for hydrogen spillover, the hydrogen adsorption capacity in MOF-177 was enhanced by a factor of approximately 2.5, to 1.5 wt % at 298 K and 10 MPa, and the adsorption was reversible. N2 and O2 adsorption measurements showed that O2 was adsorbed more favorably than N2 on MOF-177 with a selectivity of approximately 1.8 at 1 atm and 298 K, which makes MOF-177 a promising candidate for air separation. The isotherm was linear for O2 while being concave for N2. Water vapor adsorption studies indicated that MOF-177 adsorbed up to approximately 10 wt % H2O at 298 K. The framework structure of MOF-177 was not stable upon H2O adsorption, which decomposed after exposure to ambient air in 3 days. All the results suggested that MOF-177 could be a potentially promising material for gas separation and storage applications at ambient temperature (under dry conditions or with predrying).

16.
Langmuir ; 23(7): 3825-31, 2007 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-17315903

RESUMO

Several carbon-based adsorbents, CuCl/AC, PdCl2/AC, and Pd/AC (where AC denotes activated carbon), were studied for desulfurization of a model jet fuel by selective adsorption of thiophenic molecules. Comparisons with gamma-Al2O3 support and desulfurization of a commercial jet fuel were also studied. The results showed that the selective sulfur adsorption capacity of PdCl2 was higher than that of CuCl and Pd(0), in agreement with molecular orbital results. It was also found that the activated carbon is the best support for pi-complexation sorbents to remove sulfur-containing compounds, i.e., benzothiophene and methylbenzothiophene. Among all the adsorbents studied, PdCl2/AC had the highest capacity for desulfurization. A significant synergistic effect was observed between the carbon substrate and the supported pi-complexation sorbent, and this effect was explained by a geometric effect. The saturated sorbent was regenerated by desorption assisted by ultrasound with a solvent of 30 wt % benzene and 70 wt % n-octane. The results showed that the amount of sulfur desorbed was higher with ultrasound, 65 wt % desorption vs 45 wt % without ultrasound in a static system at 50 degrees C.

17.
J Phys Chem B ; 110(34): 17175-81, 2006 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16928014

RESUMO

Low silica type X zeolites (LSX, Si/Al = 1) fully exchanged by alkali-metal cations (Li(+), Na(+), and K(+)) were studied for their hydrogen storage capacities. Hydrogen adsorption isotherms were measured separately at 77 K and <1 atm, and at 298 K and <10 MPa. It was found that the hydrogen adsorption capacity of LSX zeolite depended strongly on the cationic radius and the density of the cations that are located on the exposed sites. The interaction energies between H(2) and the cations follow the order Li(+) > Na(+) > K(+), as predicted based on the ionic radii. Oxygen anions on zeolite framework were minor adsorption sites. Li-LSX had an H(2) capacity of 1.5 wt % at 77 K and 1 atm, and a capacity of 0.6 wt % at 298 K and 10 MPa, among the highest of known sorbents. The hydrogen capacity in LSX zeolite by bridged hydrogen spillover was also investigated. A simple and effective technique was employed to build carbon bridges between the H(2) dissociation catalyst and the zeolite to facilitate spillover of hydrogen atoms. Thus, the hydrogen storage capacity of Li-LSX zeolite was enhanced to 1.6 wt % (by a factor of 2.6) at 298 K and 10 MPa. This is by far the highest hydrogen storage capacity obtained on a zeolite material at room temperature. Furthermore, the adsorption rates were fast, and the storages were shown to be fully reversible and rechargeable. Further optimization of the bridge building technique would lead to an additional enhancement of hydrogen storage.

18.
J Am Chem Soc ; 128(25): 8136-7, 2006 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-16787068

RESUMO

The possible utilization of hydrogen as the energy source for fuel-cell vehicles is limited by the lack of a viable hydrogen storage system. Metal-organic frameworks (MOFs) belong to a new class of microporous materials that have recently been shown to be potential candidates for hydrogen storage; however, no significant hydrogen storage capacity has been achieved in MOFs at ambient temperature. Here we report substantially increased hydrogen storage capacities of modified MOFs by using a simple technique that causes and facilitates hydrogen spillover. Thus, the storage of 4 wt % is achieved at room temperature and 100 atm for the modified IRMOF-8. The adsorption is reversible, and the rates are fast. That has made MOFs truly promising for hydrogen storage application.

19.
J Phys Chem B ; 110(12): 6236-44, 2006 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-16553439

RESUMO

Spillover of hydrogen on nanostructured carbons is a phenomenon that is critical to understand in order to produce efficient hydrogen storage adsorbents for fuel cell applications. The spillover and interaction of atomic hydrogen with single-walled carbon nanotubes (SWNTs) is the focus of this combined theoretical and experimental work. To understand the spillover mechanism, very low occupancies (i.e., 1 and 2 H atoms adsorbed) on (5,0), (7,0), (9,0) zigzag (semiconducting) SWNTs and a (5,5) armchair (metallic) SWNT, with corresponding diameters of 3.9, 5.5, 7.0, and 6.8 A, were investigated. The adsorption binding energy of H atoms depends on H occupancy, tube diameter, and helicity (or chirality), as well as endohedral (interior) vs exohedral (exterior) binding. Exohedral binding energies are substantially higher than endohedral binding energies due to easier sp(2)-sp(3) transition in hybridization of carbon on exterior walls upon binding. A binding energy as low as -8.9 kcal/mol is obtained for 2H atoms on the exterior wall of a (5, 0) SWNT. The binding energies of H atoms on the metallic SWNT are significantly weaker (about 23 kcal/mol weaker) than that on the semiconductor SWNT, for both endohedral and exohedral adsorption. The binding energy is generally higher on SWNTs of larger diameters, while its dependence on H occupancy is relatively weak except at very low occupancies. Experimental results at 298 K and for pressures up to 10 MPa with a carbon-bridged composite material containing SWNTs demonstrate the presence of multiple adsorption sites based on desorption hysteresis for the spiltover H on SWNTs, and the experimental results were in qualitative agreement with the molecular orbital calculation results.

20.
J Am Chem Soc ; 128(3): 726-7, 2006 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-16417355

RESUMO

The utilization of hydrogen in fuel-cell powered vehicles is limited by the lack of a safe and effective system for hydrogen storage. At the present time, there is no viable storage technology capable of meeting the DOE targets. Porous metal-organic frameworks (MOFs) are novel and potential candidates for hydrogen storage. Until now it is still not possible to achieve any significant hydrogen storage capacity in MOFs at ambient temperature. Here, we report, for the first time, significant amounts of hydrogen storage in MOF-5 and IRMOF-8 at ambient temperature by using a very simple technique via hydrogen dissociation and spillover. Thus, hydrogen uptakes for MOF-5 and IRMOF-8 can be enhanced by a factor of 3.3 and 3.1, respectively (to nearly 2 wt % at 10 MPa and 298 K). Furthermore, the isotherms are totally reversible. These findings suggest that our technique is suitable for hydrogen storage in a variety of MOF materials because of their similar structures as MOF-5 and IRMOF-8.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA